首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rat liver mitochondrial carnitine palmitoyl transferase (CPT) was found to reside in two mitochondrial locations. Twenty to twenty-five percent of the total CPT activity was easily released and solubilized by digitonin. This activity appeared to be the outer form of CPT (CPTO). The remainder of the activity or the inner CPT (CPTI) was tightly membrane bound. Trypsin digestion of the digitonin prepared mitoplast did not affect residual CPT activity indicating that this activity probably resided on the inner side of the membrane. Following their separation by digitonin treatment, CPTO and CPTI were partially purified 14.7-and 16.7-fold, respectively. The purification of each enzyme involved extraction from the membrane with Tween 80, ammonium sulfate fractionation, gel filtration, and another ammonium sulfate fractionation. The partially purified CPTO and CPTI were found to have identical elution volumes from a G-200 column corresponding to a molecular weight of 430,000. Also they both were found to have nearly identical Km values for palmitoyl-CoA, palmitoyl-carnitine, CoA, and carnitine suggesting they were identical enzymes. The V values could not be compared due to differences in purity, but the ratio of V in the forward direction to V in the reverse direction was identical for CPTI and CPTO again suggesting enzyme identity. Assay of the CPT system “in situ” by following the reduction of the acyl-CoA dehydrogenase, a flavoprotein, suggested that the activity of CPTI was 450-fold greater than the activity of CPTO when both were present in the intact membrane. These data suggest that “in situ” factors exist which greatly change the catalytic properties of CPTI compared to CPTO.  相似文献   

2.
The oxidative desaturation of palmitoyl CoA by microsomes from anaerobically grown Saccharomyces cerevisiae has been studied by using NADH as electron donor. The desaturation product was identified as palmitoleic acid by periodate oxidation. The desaturase activity was sensitive to relatively high concentrations of cyanide; the concentration of cyanide causing half-maximal inhibition was determined to be 7.1 mm. The rate of reoxidation of cytochrome b5 in NADH-reduced microsomes was stimulated by the addition of palmitoyl CoA, and the amount of cytochrome b5 reoxidized by the palmitoyl CoA added could be closely correlated to the amount of palmitoleate formed. No stimulation of the reoxidation of cytochrome b5 was induced by palmitoyl CoA in microsomes prepared from the desaturase-repressed cells and from a desaturase-deficient mutant, strain KD-20. It is concluded that the fatty acyl CoA desaturase system of yeast microsomes involves cytochrome b5 as an electron carrier and that the terminal desaturase is sensitive to relatively high concentrations of cyanide.  相似文献   

3.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

4.
An enzyme present in cell-free extracts of B. melaninogenicus grown with vitamin K is described which catalyzes the synthesis of 3-ketodihydrosphingosine from palmitoyl CoA and l-serine. Activity of the 3-ketodihydrosphingosine synthetase was measured as a function of time, palmitoyl CoA concentration, and serine concentration. The Bacteroides synthetase differs from corresponding enzymes from brain microsomes and from yeast in that it is present in the 100,000g supernatant of sonicated cells and is not associated with any particulate fraction.Extracts prepared from cells depleted of vitamin K showed only slight 3-ketodihydrosphingosine synthetase activity. Neither vitamin K1, menadione, nor pyridoxal phosphate were effective in enhancing the activity in cell-free extracts of vitamin K-depleted B. melaninogenicus. However, induction of the enzyme activity in intact cells was demonstrated by the addition of vitamin K to a vitamin K-depleted culture. Synthetase activity was found to be increased 15 min following the addition of the vitamin, reached a maximum at 75 min, and thereafter remained constant. Both puromycin and rifampcin inhibit induction of the enzyme by vitamin K1 suggesting that vitamin K induces de novo synthesis of the synthetase.  相似文献   

5.
The phospholipase A2 (PLA2) activity of peroxiredoxin (Prdx)6 has important physiological roles in the synthesis of lung surfactant and in the repair of peroxidized cell membranes. These functions require the activity of a lysophospholipid acyl transferase as a critical component of the phospholipid remodeling pathway. We now describe a lysophosphatidylcholine acyl transferase (LPCAT) activity for Prdx6 that showed a strong preference for lysophosphatidylcholine (LPC) as the head group and for palmitoyl CoA in the acylation reaction. The calculated kinetic constants for acylation were Km 18 μM and Vmax 30 nmol/min/mg protein; the Vmax was increased 25-fold by phosphorylation of the protein while Km was unchanged. Study of recombinant protein in vitro and in mouse pulmonary microvascular endothelial cells infected with a lentiviral vector construct indicated that amino acid D31 is crucial for LPCAT activity. A linear incorporation of labeled fatty acyl CoA into dipalmitoyl phosphatidylcholine (PC) indicated that LPC generated by Prdx6 PLA2 activity remained bound to the enzyme for the reacylation reaction. Prdx6 is the first LPCAT enzyme with demonstrated cytoplasmic localization. Thus, Prdx6 is a complete enzyme comprising both PLA2 and LPCAT activities for the remodeling pathway of PC synthesis or for repair of membrane lipid peroxidation.  相似文献   

6.
Effects of spermine, bovine serum albumin, and Z protein on microsomal lipid formation from sn-glycerol 3-phosphate and [14C]palmitoyl CoA were investigated. In the presence of these agents, microsomal lipid formation was stimulated. This was attributed to the activation of sn-glycerol 3-phosphate acyltransferase and to the inhibition of palmitoyl CoA hydrolase. In addition to palmitoyl CoA, spermine also reacted with microsomal membranes in causing their aggregation, and ATP reversed the effect of spermine. Further studies indicated that the interaction of spermine with palmitoyl CoA, rather than with microsomal membranes, was responsible for the activation of glycerolipid formation or to the inhibition of palmitoyl CoA reductase. Examination of the intravesicular distribution of sn-glycerol 3-phosphate acyltransferase and palmitoyl CoA hydrolase and the effects of structural integrity of microsomal vesicles on these two membrane-bound enzymes indicated that the activation of glycerolipid formation and the inhibition of palmitoyl CoA hydrolase by spermine, bovine serum albumin, or Z protein may be closely linked with the structural integrity of microsomal vesicles.  相似文献   

7.
Adrenergic control of liver cholesterol metabolism was studied in the rabbit. The effects of noradrenaline (α1, α2, β2 agonist) and isoprenaline (β1, β2 agonist) on 3-hydroxy-3-methylglutaryl coenzyme A reductase, acyl-coenzyme A: cholesterol-o-acyltransferase (cholesterol acyltransferase) and cholesterol 7α-hydroxylase, the rate-limiting enzymes of cholesterol biosynthesis and esterification and bile acid synthesis, respectively, were examined in the normally fed and cholesterol-fed male New Zealand White rabbit. Isoprenaline increased the activities of hydroxymethylglutaryl CoA reductase and cholesterol acyltransferase approx. 12-fold and 5-fold, respectively, in normally fed rabbits. Noradrenaline, by contrast, produced an effect only on hydroxymethylglutaryl CoA reductase, the activity of which was increased 3-fold in these animals. Neither catecholamine had an effect on hydroxymethylglutaryl CoA reductase in the cholesterol-fed rabbit. Isoprenaline decreased the activity of cholesterol acyltransferase by approx. 40% and increased the activity of cholesterol 7α-hydroxylase 2-fold in the cholesterol-fed rabbit compared to cholesterol-fed controls. Noradrenaline had no effect on either cholesterol acyltransferase or cholesterol 7α-hydroxylase in either the normally fed or the cholesterol-fed rabbit. We suggest that β2-adrenergic stimulation by isoprenaline in the normally fed rabbit may enhance cholesterol synthesis and storage, but that in the cholesterol-fed rabbit, it facilitates the elimination of cholesterol from the body by increasing the rate of bile acid synthesis.  相似文献   

8.
Sodium valproate and lithium are used to treat bipolar disorder. In rats, both reduce the turnover of arachidonic acid in several brain phospholipids, suggesting that arachidonate turnover is a common target of action of these mood stabilizers. However, the mechanisms by which these drugs reduce arachidonate turnover in brain are not the same. Lithium decreases turnover by reducing the activity and expression of the 85-kDa type IVA cytosolic phospholipase A2 (cPLA2); valproate does not affect cPLA2 activity or expression. To test whether valproate alters neural membrane order by direct esterification into phospholipid or by interrupting intermediary CoA metabolism, we measured valproyl-CoA, esterified valproate, and short chain acyl-CoAs in brains from control rats and rats treated chronically with sodium valproate. Valproyl-CoA and esterified forms of valproate were not found in brain with detection limits of 25 and 37.5 pmol/g brain–1, respectively. Valproate treatment did result in a 1.4-fold decrease and 1.5-fold increase in the brain concentrations of free CoA and acetyl-CoA when compared to control. Therefore the reduction of brain arachidonic acid turnover by chronic valproate in rats is not related to the formation of valproyl-CoA or esterified valproate, but may involve changes in the intermediary metabolism of CoA and short chain acyl-CoA.  相似文献   

9.
An in vitro study was conducted to determine whether bovine mammary glucose-6-phosphate dehydrogenase (G6PD) activity was regulated by palmitoyl coenzyme A (CoA), acetate, spermidine, and putrescine and whether these effects were dependent upon stage of lactation. Early lactation explants incubated in media containing palmitoyl CoA or acetate had reduced (P less than 0.01) G6PD activity compared with incubated control explants. G6PD activity in early lactation explants was reduced (P less than 0.05) when incubated with 5 microM palmitoyl CoA or 1 mM acetate compared with 25 microM palmitoyl CoA or 10 mM acetate. Spermidine (0.4 mM) reversed (P less than 0.05) palmitoyl CoA-induced inhibition of early lactation G6PD activity at 5 microM, but not at 25 microM palmitoyl CoA. G6PD activity in early lactation explants was decreased (P less than 0.05) when treated with putrescine (0.4 mM) compared with explants treated with spermidine. Addition of acetate in combination with 5 microM palmitoyl CoA reversed G6PD inhibition (P less than 0.05 for 1 mM and P less than 0.01 for 10 mM) while addition of either level of acetate in combination with 25 microM palmitoyl CoA failed to reverse G6PD inhibition. G6PD activity was higher (P less than 0.01) in early lactation than mid-lactation explants. No statistical differences (P greater than 0.1) were found among any treatments in explants from mid-lactation cows. We conclude that palmitoyl CoA and acetate will inhibit G6PD activity in early lactation, but not mid-lactation explants; addition of spermidine will reverse this inhibition.  相似文献   

10.
4-Coumarate:CoA ligase (EC 6.2.1.12) was isolated from 8-day-old cell suspension cultures of parsley (Petroselinum hortense Hoffm.) which had been irradiated with ultraviolet light for 15 h. The enzyme was partially purified by fractionation with MnCl2 and (NH4)2SO4 and by column chromatography on diethylaminoethyl cellulose, hydroxyapatite, and aminohexyl-Sepharose. A 90-fold increase in specific activity with an overall yield of 20% was achieved. Analytical gel electrophoresis indicated the occurrence of only one 4-coumarate:CoA ligase species in the final enzyme preparation. The enzyme was largely specific for 4-coumarate and other derivatives of cinnamic acid. 4-Coumarate had the lowest apparent Km and the highest VKm values (1.4 × 10?5, m and 14.7 × 105 pkatal × m?1, respectively) of all substrates tested. Only the trans isomer of 4-coumarate was activated. The two cosubstrates, ATP and CoA, exhibited sigmoidal saturation kinetics, which were interpreted as indicating homotropic, allo-steric effects. A molecular weight of about 67,000 was estimated for 4-coumarate:CoA ligase. The substrate specificity of the enzyme was in agreement with its proposed function in flavonoid biosynthesis.  相似文献   

11.
Palmitoyl CoA inhibited EDTA-ATPase of heavy meromyosin (HMM) prepared from rabbit skeletal muscle. The concentration for half maximum inhibition of EDTA-ATPase was about 18 microM. Myristoyl CoA, the other long chain fatty acyl CoA, also inhibited EDTA-HMM ATPase, but CoA and short chain CoA thioesters, such as butyryl CoA, acetoacetyl CoA and acetyl CoA, at 40 microM hardly inhibited EDTA-ATPase. Less than 20% inhibition of EDTA-HMM ATPase was obtained with Na-palmitate and Na-myristate at 40 microM, whereas about 90% inhibition of the enzyme occurred in the presence of 40 microM palmitoyl CoA and myristoyl CoA. Palmitoyl carnitine, as well as carnitine, failed to inhibit EDTA-HMM-ATPase. The inhibition of palmitoyl CoA of EDTA-ATPase was reversed by bovine serum albumin and spermine. Mg2+-HMM ATPase activity was enhanced by palmitoyl CoA at 2, 5, and 10 microM. About a 25% increase in Mg2+-HMM ATPase activity was obtained at 5 and 10 microM. At higher concentrations than 20 microM, the enzyme was inhibited by palmitoyl CoA and the degree of inhibition was related to the concentration of the CoA thioester. At 80 microM, the activity was about 15% of the maximum value. The efficacy of myristoyl CoA on Mg2+-ATPase was almost the same as that of palmitoyl CoA. Mg2+-ATPase activity was not enhanced by CoA, butyryl CoA, acetoacetyl CoA, Na-myristate, Na-palmitate, palmitoyl carnitine, or carnitine at 10 microM, and was hardly reduced by these substances at 40 microM. Serum albumin and spermine also canceled, to some extent, these effects of palmitoyl CoA on Mg2+-ATPase.  相似文献   

12.
Acetyl-coenzyme A (CoA) synthetase was purified 364-fold from leaves of spinach (Spinacia oleracea L.) using ammonium sulfate fractionation followed by ion exchange, dye-ligand, and gel permeation chromatography. The final specific activity was 2.77 units per milligram protein. The average Mr value of the native enzyme was about 73,000. The Michaelis constants determined for Mg-ATP, acetate, and coenzyme A were 150, 57, and 5 micromolar, respectively. The purified enzyme was sensitive to substrate inhibition by CoA with an apparent Ki for CoA of 700 micromolar. The enzyme was specific for acetate; other short and long chain fatty acids were ineffective as substrates. Several intermediates and end products of fatty acid synthesis were examined as potential inhibitors of acetyl-CoA synthetase activity, but none of the compounds tested significantly inhibited acetyl-CoA synthetase activity in vitro. The properties of the purified enzyme support the postulated role of acetyl-CoA synthetase as a primary source of chloroplast acetyl-CoA.  相似文献   

13.
Cross‐sectional human studies have associated mitochondrial dysfunction to type 2 diabetes. We chose Zucker diabetic fatty (ZDF) rats as a model of progressive insulin resistance to examine whether intrinsic mitochondrial defects are required for development of type 2 diabetes. Muscle mitochondrial function was examined in 6‐, 12‐, and 19‐week‐old ZDF (fa/fa) and fa/+ control rats (n = 8–10 per group) using respirometry with pyruvate, glutamate, and palmitoyl‐CoA as substrates. Six‐week‐old normoglycemic–hyperinsulinemic fa/fa rats had reduced mitochondrial fat oxidative capacity. Adenosine diphosphate (ADP)‐driven state 3 and carbonyl cyanide p‐trifluoromethoxyphenylhydrazone (FCCP)‐stimulated state uncoupled (state u) respiration on palmitoyl‐CoA were lower compared to controls (62.3 ± 9.5 vs. 119.1 ± 13.8 and 87.8 ± 13.3 vs. 141.9 ± 14.3 nmol O2/mg/min.). Pyruvate oxidation in 6‐week‐old fa/fa rats was similar to controls. Remarkably, reduced fat oxidative capacity in 6‐week‐old fa/fa rats was compensated for by an adaptive increase in intrinsic mitochondrial function at week 12, which could not be maintained toward week 19 (140.9 ± 11.2 and 57.7 ± 9.8 nmol O2/mg/min, weeks 12 and 19, respectively), whereas hyperglycemia had developed (13.5 ± 0.6 and 16.1 ± 0.3 mmol/l, weeks 12 and 19, respectively). This mitochondrial adaptation failed to rescue the progressive development of insulin resistance in fa/fa rats. The transition of prediabetes state toward advanced hyperglycemia and hyperinsulinemia was accompanied by a blunted increase in uncoupling protein‐3 (UCP3). Thus, in ZDF rats insulin resistance develops progressively in the absence of mitochondrial dysfunction. In fact, improved mitochondrial capacity in hyperinsulinemic hyperglycemic rats does not rescue the progression toward advanced stages of insulin resistance.  相似文献   

14.
Cao YZ  Oo KC  Huang AH 《Plant physiology》1990,94(3):1199-1206
Lysophosphatidate (LPA) acyltransferase (EC 2.3. 1.51) in the microsomes from the maturing seeds of meadowfoam (Limnanthes alba), nasturtium (Tropaeolum majus), palm (Syagrus cocoides), castor bean (Ricinus communis), soybean (Glycine max), maize (Zea mays), and rapeseed (Brassica napus) were tested for their specificities toward 1-oleoyl-LPA or 1-erucoyl-LPA, and oleoyl coenzyme A (CoA) or erucoyl CoA. All the enzymes could use either of the two acyl acceptors and oleoyl CoA, but only the meadowfoam enzyme could use erucoyl CoA as the acyl donor to produce dierucoyl phosphatidic acid (PA). The meadowfoam enzyme was studied further. It had an optimal activity at pH 7 to 8, and its activity was inhibited by 1 millimolar MnCl2, ZnCl2, or p-chloromercuribenzoate. In a test of substrate specificity using increasing concentrations of either 1-oleoyl-LPA or 1-erucoyl-LPA, and either oleoyl CoA or erucoyl CoA, the enzyme activity in producing PA was highest for dioleoyl-PA, followed successively by 1-oleoyl-2-erucoyl-PA, dierucoyl-PA, and 1-erucoyl-2-oleoyl-PA. In a test of substrate selectivity using a fixed combined concentration, but varying proportions, of 1-oleoyl-LPA and 1-erucoyl-LPA, and of oleoyl CoA and erucoyl CoA, the enzyme showed a pattern of acyl preference similar to that observed in the test of substrate specificity, but the preference toward oleoyl moiety in the substrates was slightly stronger. The meadowfoam microsomes could convert [14C]glycerol-3-phosphate to diacylglycerols and triacylglycerols in the presence of erucoyl CoA. The meadowfoam LPA acyltransferase is unique in its ability to produce dierucoyl-PA, and should be a prime candidate for use in the production of trierucin oils in rapeseed via genetic engineering.  相似文献   

15.
Rat liver microsomes incorporate [14C]palmitoyl CoA into membrane phospholipids via the deacylation/acylation cycle. This activity is reversibly inactivated/activated by treatment of the microsomes with ATP, MgCl2, and 105,000g supernatant or with 105,000g supernatant alone. These observations suggest that the acylation cycle is controlled by a mechanism involving phosphorylation/dephosphorylation. As the pool of lysolecithin in the membranes is not altered by conditions increasing incorporation of palmitoyl CoA into phospholipid, it is probable that the site of regulation of deacylation/acylation is at the acyltransferase rather than the phospholipase.  相似文献   

16.
The O-dealkylation of pentoxyresorufin (7-pentoxyphenoxazone) by rat liver microsomes was examined. The reaction appeared highly specific for certain phenobarbital inducible forms of cytochrome P-450 and was increased 95- to 140-fold by animal pretreatment with phenobarbital (75 mg/kg/day, four ip injections) and ~50-fold by Aroclor 1254 (500 mg/kg, one ip injection) while animal pretreatment with 3-methylcholanthrene (50 mg/kg/day, three ip injections) resulted in less than a 2-fold increase over the rate detected in control microsomes. It was observed that this activity, in microsomes for Aroclor-pretreated rats, was dependent on O2 and was inhibited by metyrapone and SKF 525-A, indicative of cytochrome(s) P-450 mediation in the reaction. When antibodies directed against purified cytochrome(s) P-450S were employed to inhibit the pentoxyresorufin O-dealkylation reaction, antibodies to P-450PB-B greatly inhibited the reaction (>90%), while antibodies to P-450PB-C or P-450PB/PCN-E had minimal effects. Assay of hepatic microsomes from rats which were pretreated with varying doses of phenobarbital (0.9–75 mg/kg/day, four ip injections) indicated that while aminopyrine-N-demethylase activity was induced only 2-fold at the maximum dose (75 mg/kg/day), pentoxyresorufin O-dealkylase activity was induced ~140-fold at this dose and ~4-fold by a dose of phenobarbital as low as 0.9 mg/kg.  相似文献   

17.
Electron-transferring flavoprotein (ETF) and long-chain acyl coenzyme A (CoA) dehydrogenase (LC-AD) have been purified essentially to homogeneity from beef heart (BH) mitochondria and partially characterized. The spectra of the major yellow acyl CoA dehydrogenase from BH mitochondria, both oxidized and when bleached with C16CoA, were found to resemble those of pig liver (PL) LC-AD. The subunit molecular weight was found to be about 38,000 both by Na-dodecyl sulfate gel electrophoresis and by minimal molecular weight based on flavin content (A450, ? = 11.3 × 103 cm?1m?1). The enzyme is probably a tetramer with no interchain disulfide bonds. When assayed in the presence of ETF, relative activities are C8CoA > C16CoA ? C4CoA. These findings show that physicochemical and specificity characteristics do not coincide in the pig liver and the beef heart enzymes. The BH ETF is similar to the PL ETF in its spectra, in subunit molecular weight determined by minimal molecular weight (based on flavin content as A438), by Na-dodecyl-SO4 gel electrophoresis, the absence of interchain disulfide bonds, V?p, and the presence of two subunits/molecule. There were some changes in the amino acid composition concomitant with a decrease in apparent isoelectric point. The pig and beef enzymes were reactive with each other. The turnover number of the beef heart system at “saturating” ETF was 100 mol of 1, 6-dichlorophenol indophenol reduced/min/ mol of LC-AD. Abnormally low activity at low ETF concentrations as compared to high ETF concentrations was seen with the beef heart enzymes as with the pig liver system previously studied and again a material obtained during purification of the ETF similar to the “factor” from pig liver (based on chromatographie and disc-gel electrophoretic behavior) stimulated the low activity, while the high-ETF activity was relatively unaffected, permitting linear double-reciprocal plots over wide ranges of ETF concentration. Fatty-acid-free bovine serum albumin (BSA-FAF) could mimic this effect at equivalent protein concentrations (50–100 μg), as could increased LC-AD concentration and, to a lesser extent, limited aging. Studies of activity at very high concentrations of C16CoA revealed a marked high-substrate inhibition with activity peaking at about 4 μm, the reported critical micelle concentration for C16CoA. The addition of BSA-FAF resulted in more “normal” v vs [S] curves, and although the substrate inhibition was still present it was less severe. The Km for C16CoA in the presence of BSA-FAF is about 1 μm. These results suggest that the inhibitory species may be the C16CoA micelle, and the BSA-FAF may reverse or alleviate the inhibition by binding acyl CoA in a manner analogous to its binding of fatty acid anions.  相似文献   

18.
Palmitoyl CoA which is an effective inhibitor of adenine nucleotide transport is able to remove bound [14C]ADP and [3H]atractylate from the translocator on the outer side of the inner mitochondrial membrane. Bongkrekic acid, when added to the incubation medium prior to palmitoyl CoA, can prevent the removal of bound [14C]ADP from the membrane by palmitoyl CoA, however, bongkrekic acid is ineffective if palmitoyl CoA is added first. Upon incubation with inverted submitochondrial particles, both palmitoyl CoA and bongkrekic acid prevent the uptake and transport of [14C]ADP by the particles. Moreover, when the submitochondrial particles are preincubated with [14C]ADP, palmitoyl CoA, like bongkrekic acid, is unable to remove the bound nucleotide from the inner face of the carrier. Thus, palmitoyl CoA which has a high affinity for the translocator on both sides of the inner mitochondrial membrane, nevertheless, interacts differently with the carrier on each side of the membrane. This suggests that the translocase contains binding sites in two specific states both of which accommodate palmitoyl CoA.  相似文献   

19.
R J Morin  D Richards 《Life sciences》1974,15(7):1267-1275
Rates of cholesterol esterification with 14C-labeled palmitoyl CoA and palmitic acid were studied in microsomal and mitochondrial preparations from aortic, adrenal and testicular tissues of cholesterol-fed rabbits after administration of polyphloretin phosphate (PPP). This treatment resulted in no change in aortic microsomal esterification with palmitoyl CoA, but a marked increase in adrenal esterification. Mitochondrial esterification of the palmitic acid substrate at low pH and without added cofactors was unaffected by PPP in aorta and adrenal, but was decreased in the testes. In vitro addition of 5μg/ml PPP to aortic, adrenal and testicular microsomal and mitochondrial preparations resulted in marked inhibition of incorporation of palmitoyl CoA and palmitic acid into cholesteryl esters in all cases.  相似文献   

20.
The involvement of cytochrome b5 in different cytochrome P450 monooxygenase and palmitoyl CoA desaturase activities in microsomes from insecticide-resistant (LPR) house flies was determined using a specific polyclonal antiserum developed against house fly cytochrome b5. Anti-b5 antiserum inhibited the reduction of cytochrome b5 by NADH-cytochrome b5 reductase. The antiserum also inhibited palmitoyl CoA desaturase, methoxycoumarin-O-demethylase (MCOD), ethoxycoumarin-O-deethylase (ECOD), and benzo[a]pyrene hydroxylase (aromatic hydrocarbon hydroxylase, AHH) activities. However, methoxyresorufin-O-demethylase (MROD) and ethoxyresorufin-O-deethy-lase (EROD) activities were not affected by this antiserum. These results demonstrate that cytochrome b5 is involved in fatty acyl CoA desaturase activities and in certain cytochrome P450 monooxygenase activities (i.e., MCOD, ECOD, and AHH) in LPR house fly microsomes. Other cytochrome P450 monooxygenase activities (i.e., MROD and EROD) may not require cytochrome b5. The results suggest that cytochrome b5 involvement with cytochrome P450 monooxygenase activities is dependent upon the cytochrome P450 isoform involved. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号