首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were carried out on anaesthetized rabbits to determine the influence of carotid sinus pressure (CSP) on the changes in the plasma concentration of arginine vasopressin (AVP) that occurred in response to changing blood volume. The aortic depressor nerves were sectioned in all experiments and the vagus nerves remained intact. Both carotid sinuses were perfused at constant controlled pressure. Blood volume was increased (n = 10) or decreased (n = 10) by 10 and 20% of the estimated blood volume. Plasma immunoreactive arginine vasopressin concentration (IR-AVP) was significantly higher at a CSP of 60 mmHg (1 mmHg = 133.322 Pa) than it was at a CSP of 120 mmHg in both groups of animals. Increasing blood volume did not cause any significant change in IR-AVP at either carotid sinus pressure. Haemorrhage of 10% of the blood volume did not change IR-AVP. Haemorrhage of 20% of the blood volume significantly increased IR-AVP at both CSPs; the magnitude of the increase in IR-AVP was not altered by changing the CSP. No interaction was demonstrated between the effects of CSP and blood volume on plasma IR-AVP.  相似文献   

2.
In chloralose-anaesthetized dogs, plasma vasopressin concentration was measured by radioimmunoassay during step changes in blood volume of 4 mL/kg over a range of blood volume from +20 to -12 mL/kg. Blood volume was both increased and decreased over this range. There was a logarithmic relationship between blood volume and plasma vasopressin concentration over the range of blood volume examined. There was also a logarithmic relationship between blood volume and mean left atrial pressure. Linear regression between the natural logarithm of plasma vasopressin concentration and mean arterial pressure, heart rate, and mean left atrial pressure gave the highest correlation coefficient (r = 0.94) between vasopressin and mean arterial pressure. The results support the hypothesis that there are sensitive mechanisms controlling the release of vasopressin in response to changes in blood volume. Observations were also made of changes in atrial pressure and activity of left atrial receptors during changes in blood volume over the same range. The results suggest that changes in atrial receptor activity are unlikely to be the major cause of the large increases in plasma vasopressin concentration associated with hypovolemia.  相似文献   

3.
4.
Atrial natriuretic peptide and vasopressin in human plasma   总被引:1,自引:0,他引:1  
M Sakamoto  I Tanaka  Y Oki  Y Ikeda  M Nanno  T Yoshimi 《Peptides》1988,9(1):187-191
Using a specific radioimmunoassay for atrial natriuretic peptide (ANP), plasma immunoreactive ANP was measured in 17 normal subjects and 83 patients with various diseases. Plasma ANP concentration in normal subjects was 14.1 +/- 1.7 pg/ml (mean +/- S.E.). Relatively high plasma ANP concentrations were detected in patients with diabetes mellitus, hyperthyroidism, atrial fibrillation and liver cirrhosis. Plasma ANP concentrations in the patients correlated positively with mean arterial blood pressure and plasma AVP concentrations. Plasma ANP concentrations in the patients also had positive correlations with left atrial dimension and left ventricular diastolic dimension determined by echocardiography. Another positive correlation was observed in the patients between plasma AVP concentrations and mean arterial blood pressure. These results suggest that ANP is a volume regulatory hormone but also that ANP may be involved in the blood pressure regulating system.  相似文献   

5.
Central nervous system-derived adrenomedullin (AM) has been shown to be a physiological regulator of thirst. Administration of AM into the lateral ventricle of the brain attenuated water intake, whereas a decrease in endogenous AM, induced by an AM-specific ribozyme, led to exaggerated water intake. We hypothesized that central AM may control fluid homeostasis, in part by regulating plasma arginine vasopressin (AVP) levels. To test this hypothesis, AM or a ribozyme specific to AM was administered intracerebroventricularly, and alterations in plasma AVP concentrations were examined under basal and stimulated (hypovolemic) conditions. Additionally, we examined changes in blood volume, kidney function, and plasma electrolyte and protein levels, as well as changes in plasma aldosterone concentrations. Intracerebroventricular administration of AM increased plasma AVP levels, whereas AM ribozyme treatment led to decreased plasma AVP levels under stimulated conditions. During hypovolemic challenges, AM ribozyme treatment led to an increased loss of plasma volume compared with control animals. Although overall plasma osmolality did not differ between treatment groups during hypovolemia, aldosterone levels were significantly higher and, consequently, plasma potassium concentrations were lower in AM ribozyme-treated rats than in controls. These data suggest that brain-derived AM is a physiological regulator of vasopressin secretion and, thereby, fluid homeostasis.  相似文献   

6.
The influence of aortic baroreceptors and vagal afferent nerves on the release of immunoreactive vasopressin (iVP) and immunoreactive atrial natriuretic factor (iANF) was examined in anaesthetized rabbits. Changes in plasma concentrations of iVP and iANF, heart rate, mean arterial pressure, and right atrial pressure were measured in response to blood volume changes (+20, +10, -10, -20%). Carotid sinus pressure was maintained at 100 mmHg (1 mmHg = 133.3 Pa), and blood volume changes were performed before and after bilateral vagotomy (VNX) in all experiments. Two experimental groups were studied: rabbits with aortic depressor nerves intact (ADNI) and those with aortic depressor nerves sectioned (ADNX). Mean arterial and right atrial pressures decreased during haemorrhage and increased in response to volume expansion. Plasma iVP concentrations increased with haemorrhage and decreased with volume expansion in the ADNI group. Plasma iANF, however, decreased with haemorrhage and increased during volume expansion in both ADNI and ADNX groups. Vagotomy caused an increase in baseline plasma iANF in the ADNX group. The responses of iANF to blood volume changes were augmented after VNX and ADNX. The results show that neither the aortic baroreceptor nor the vagal afferent input are needed for the iANF response to changes in blood volume, over the range of +/- 20%. In contrast, intact aortic baroreceptors are essential for changes in circulating iVP in this preparation.  相似文献   

7.
8.
9.
10.
11.
Role of calcium in volume regulation by dog red blood cells   总被引:5,自引:5,他引:0       下载免费PDF全文
Dog red blood cells (RBC) are shown to regulate their volume in anisosmotic media. Extrusion of water from osmotically swollen cells requires external calcium and is associated with net outward sodium movement. Accumulation of water by osmotically shrunken cells is not calcium dependent and is associated with net sodium uptake. Net movements of calcium are influenced by several variables including cell volume, pH, medium sodium concentration, and cellular sodium concentration. Osmotic swelling of cells increases calcium permeability, and this effect is diminished at acid pH. Net calcium flux in either direction between cells and medium is facilitated when the sodium concentrations is low in the compartment from which calcium moves and/or high in the compartment to which calcium moves. The hypothesis is advanced that energy for active sodium extrusion in dog RBC comes from passive, inward flow of calcium through a countertransport mechanism.  相似文献   

12.
Thiol reagents activateK-Cl cotransport (K-Cl COT), the Cl-dependent and Na-independentouabain-resistant K flux, in red blood cells (RBCs) of several species,upon depletion of cellular glutathione (GSH). K-Cl COT isphysiologically active in high potassium (HK), high GSH (HG) dog RBCs.In this unique model, we studied whether the same inverse relationshipexists between GSH levels and K-Cl COT activity found in other species.The effects of GSH depletion by three different chemical reactions[nitrite (NO2)-mediated oxidation, diazene dicarboxylicacid bis-N,N-dimethylamide (diamide)-induceddithiol formation, and glutathione S-transferase (GST)-catalyzed conjugation of GSH with 1-chloro-2,4-dinitrobenzene (CDNB)] were tested on K-Cl COT and regulatory volume decrease (RVD).After 85% GSH depletion, all three interventions stimulated K-Cl COThalf-maximally with the following order of potency: diamide > NO2 > CDNB. Repletion of GSH reversed K-Cl COTstimulation by 50%. Cl-dependent RVD accompanied K-Cl COT activationby NO2 and diamide. K-Cl COT activation at concentrationratios of oxidant/GSH greater than unity was irreversible, suggestingeither nitrosothiolation, heterodithiol formation, or GST-mediateddinitrophenylation of protein thiols. The data support the hypothesisthat an intact redox system, rather than the absolute GSH levels,protects K-Cl COT activity and cell volume regulation from thiol modification.

  相似文献   

13.
14.
Three hours after isolation, cultured hepatocytes have approximately 150,000 surface vasopressin receptors/cell, and these exhibit a Kd for 125I-vasopressin of 6 nM based on calculation of Koff/Kon, or a Kd of 9.5 nM based on Scatchard plot analysis. After the binding of 125I-vasopressin to its receptor on the hepatocyte surface, this complex is internalized with a t1/2 of 3-6 min. Following this internalization, the number of vasopressin receptors on the cell surface is restored both in vitro and in the isolated perfused liver with a t1/2 of 8-10 min. This restoration is blocked in vitro by incubation of the hepatocytes at 18 degrees C, but not by cycloheximide, suggesting that internalized vasopressin receptors recycle back to the cell surface. Prolonged incubation of hepatocytes with vasopressin results in the loss of greater than 75% of the vasopressin surface binding at concentrations of vasopressin approximately equivalent to its Kd. The binding of vasopressin to cultured hepatocytes 3-5 h after isolation resembles binding to the isolated perfused whole liver with respect to receptor dynamics. During culture for 48 h, however, we observe a progressive loss of hepatocyte surface vasopressin receptors. Concomitant with this reduction in surface receptors with time in culture, there appears to be a marked elevation in intracellular receptors.  相似文献   

15.
During an antiorthostatic posture change, left atrial (LA) diameter and arterial pulse pressure (PP) increase, and plasma arginine vasopressin (AVP) is suppressed. By comparing the effects of a 15-min posture change from seated to supine with those of 15-min seated negative pressure breathing in eight healthy males, we tested the hypothesis that with similar increases in LA diameter, suppression of AVP release is dependent on the degree of increase in PP. LA diameter increased similarly during the posture change and negative pressure breathing (-9 to -24 mmHg) from between 30 and 31 +/- 1 to 34 +/- 1 mm (P < 0.05). The increase in PP from 38 +/- 2 to 44 +/- 2 mmHg (P < 0.05) was sustained during the posture change but only increased during the initial 5 min of negative pressure breathing from 36 +/- 3 to 42 +/- 3 mmHg (P < 0.05). Aortic transmural pressure decreased during the posture change and increased during negative pressure breathing. Plasma AVP was suppressed to a lower value during the posture change (from 1.5 +/- 0.3 to 1.2 +/- 0.2 pg/ml, P < 0.05) than during negative pressure breathing (from 1.5 +/- 0.3 to 1.4 +/- 0.3 pg/ml). Plasma norepinephrine was decreased similarly during the posture change and negative pressure breathing compared with seated control. In conclusion, the results are in compliance with the hypothesis that during maneuvers with similar cardiac distension, suppression of AVP release is dependent on the increase in PP and, furthermore, probably unaffected by static aortic baroreceptor stimulation.  相似文献   

16.
17.
18.
Rates of 24Na and 42K entry into dog red blood cells were found to be strongly influenced by cell volume. The kinetics of isotope movement were complex, and the cells were not in a steady state. By applying a simple, two-compartment equation to the early times points, values for flux were calculated and corrected for the changes in surface/volume ratio which occur when cells are shrunken or swollen. Curves were thus generated showing Na and K influx as functions of cell water content. A reinvestigation of the effects of adrenalectomy showed that all the observd changes in Na flux could be explained on the basis of alterations in red cell volume.  相似文献   

19.
Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep   总被引:1,自引:0,他引:1  
To test the hypothesis that atrial natriuretic factor (ANF) has a centrally mediated action on body fluid homeostasis, the effects of intracerebroventricularly (ICV) infused ANF on plasma vasopressin (AVP) concentration and urinary water and electrolyte excretion were investigated in euhydrated and water-deprived conscious sheep. ICV ANF decreased plasma AVP concentration and increased urinary free water excretion in euhydrated sheep, with excretion of Na and K unaltered. However, ICV ANF did not affect urinary volume, free water clearance, or excretion of Na and K in dehydrated animals, although plasma AVP concentration was significantly decreased. The relationship between urine volume and plasma AVP concentration was fitted by a power curve: urine volume = 0.79 X [AVP]-0.71; urine volume changes very little as a function of AVP concentration at the higher ranges. Intravenous infusion of the same amount of ANF was without effect on plasma AVP concentration or urinary excretion in both euhydrated and dehydrated animals. Mean arterial pressure was unchanged throughout all experiments. These results are consistent with the hypothesis that central ANF inhibits AVP secretion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号