首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sphingomonas sp. strain P2, which is capable of utilizing phenanthrene as a sole carbon and energy source, was isolated from petroleum-contaminated soil in Thailand. Gas chromatography-mass spectrometry and (1)H and (13)C nuclear magnetic resonance analyses revealed two novel metabolites from the phenanthrene degradation pathway. One was identified as 5,6-benzocoumarin, which was derived by dioxygenation at the 1- and 2-positions of phenanthrene, and the other was determined to be 1,5-dihydroxy-2-naphthoic acid. Other metabolites from phenanthrene degradation were identified as 7, 8-benzocoumarin, 1-hydroxy-2-naphthoic acid and coumarin. From these results, it is suggested that strain P2 can degrade phenanthrene via dioxygenation at both 1,2- and 3,4-positions followed by meta-cleavage.  相似文献   

2.
Substantial metabolism of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-tetraCB) and 2,3′,4′,5-tetraCB by axenic cultures of Ralstonia sp. SA-5 and Pseudomonas sp. SA-6 was observed in the presence of biphenyl supplementation, although, the strains were unable to utilize tetrachlorobiphenyls as growth substrate. The former was more amenable to aerobic degradation (∼70% degradation) than the latter (22–45% degradation). Recovery of 2,5-chlorobenzoic acid and chloride from 2,3′,4′,5-tetraCB assay is an indication of initial dioxygenase attack on the 3,4-dichlorophenyl ring. The PCB-degradative ability of both strains was also investigated by GC analysis of individual congeners in Aroclor 1242 (100 ppm) following 12-day incubation with washed benzoate-grown cells. Results revealed two different catabolic properties. Whereas strain SA-6 required biphenyl as inducer of the degradation activity, such induction was not required by strain SA-5. Nearly all the detectable congeners in the mixture were extensively degraded (% reduction in ECD area counts for individual congeners ranged from 50.0 to 100% and 14.2 to 100%, respectively, for SA-5 and SA-6). The two strains exhibited no noticeable specificity for congeners with varying numbers of chlorine substitution and positions. The degradative competence of these isolates most especially SA-5 makes them among the most versatile PCB-metabolizing organisms yet reported.  相似文献   

3.
【目的】探究高效降解3-苯氧基苯甲酸(3-Phenoxybenzoic acid,3-PBA)的鞘氨醇单胞菌(Sphingomonas sp.) SC-1对苯酚的降解特性。【方法】采用HPLC测定微生物降解体系中苯酚残留量,考察环境条件对菌株SC-1降解苯酚的影响;分析不同培养时间苯酚降解体系混合样品的HPLC谱图,确定其降解中间产物。【结果】菌株SC-1能在基础盐培养基中以苯酚为唯一碳源和能源生长,在初始pH 7.0、30 °C条件下,24 h可完全降解100 mg/L苯酚;Cu2+、Ba2+、Mn2+等对其降解苯酚有不同程度的抑制作用;HPLC谱图分析,初步确定邻苯二酚是菌株SC-1降解苯酚的中间产物,且该菌株可在48 h内完全降解100 mg/L邻苯二酚。【结论】菌株SC-1对苯酚及邻苯二酚均有较强的降解能力,为完善3-PBA的降解途径及污染3-PBA或含酚废水或含酚农药残留的降解提供了数据参考。  相似文献   

4.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   

5.
The influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated when Sphingomonas sp. strain PheB4 isolated from surface mangrove sediments was grown in either phenanthrene-containing mineral salts medium (PMSM) or nutrient broth (NB). The NB-grown culture exhibited a more rapid cometabolic degradation of single and mixed non-growth substrate PAHs compared to the PMSM-grown culture. The concentrations of PAH metabolites were also lower in NB-grown culture than in PMSM-grown culture, suggesting that NB-grown culture removed metabolites at a faster rate, particularly, for metabolites produced from cometabolic degradation of a binary mixture of PAHs. Cometabolic pathways of single PAH (anthracene, fluorene, or fluoranthene) in NB-grown culture showed similarity to that in PMSM-grown culture. However, cometabolic pathways of mixed PAHs were more diverse in NB-grown culture than that in PMSM-grown culture. These results indicated that nutrient rich medium was effective in enhancing cometabolic degradation of mixed PAHs concomitant with a rapid removal of metabolites, which could be useful for the bioremediation of mixed PAHs contaminated sites using Sphingomonas sp. strain PheB4.  相似文献   

6.
Abstract A phenanthrene degrading strain of Alcaligenes sp. was isolated from oil polluted soil. Addition of Alcaligenes sp. to soil microcosms supplemented with phenanthrene (1 mg/g dry soil) resulted in degradation of the added phenanthrene within 11 days. The phenanthrene concentration declined only 12% in uninoculated soil during 42 days. The total phenanthrene degradation potential of Alcaligenes sp. was 2.3 mg/g dry soil during a period of 22 days. The amount of CO2 evolved during 22 days corresponded to the conversion of 91% of the degraded phenanthrene to CO2. The Alcaligenes sp. were not able to degrade phenanthrene in sterile soil.  相似文献   

7.
好氧条件下Sphingomonas sp.XJ1降解DBP途径的研究   总被引:1,自引:0,他引:1  
张新  胡培磊  周洪波 《生物磁学》2010,(6):1110-1113
在三角瓶中采用Sphingomonas sp.XJ1对邻苯二甲酸丁酯(DBP)进行好氧降解,以考察DBP的降解途径。分别对降解16h、32h和40h的DBP样品进行代谢产物分析,可判定保留时间为4.79min和5.11min所对应的代谢产物分别为原儿茶酸和邻苯二甲酸。由此可知,菌株Sphingomonassp.XJ1对DBP的降解遵循DBP好氧生物降解途径的一般途径。即在菌株XJI的作用下,DBP首先水解为MBP,继而水解为PA,经由PCA最终完全降解为CO2和H2O。  相似文献   

8.
9.
在三角瓶中采用Sphingomonas sp.XJ1对邻苯二甲酸丁酯(DBP)进行好氧降解,以考察DBP的降解途径。分别对降解16h、32h和40h的DBP样品进行代谢产物分析,可判定保留时间为4.79min和5.11min所对应的代谢产物分别为原儿茶酸和邻苯二甲酸。由此可知,菌株Sphingomonas sp.XJ1对DBP的降解遵循DBP好氧生物降解途径的一般途径。即在菌株XJ1的作用下,DBP首先水解为MBP,继而水解为PA,经由PCA最终完全降解为CO2和H2O。  相似文献   

10.
11.
Aim: To screen and identify bacteria from contaminated soil samples which can degrade hexachlorocyclohexane (HCH)‐isomers based on dechlorinase enzyme activity and characterize genes and metabolites. Methods and Results: Dechlorinase activity assays were used to screen bacteria from contaminated soil samples for HCH‐degrading activity. A bacterium able to grow on α‐, β‐, γ‐ and δ‐HCH as the sole carbon and energy source was identified. This bacterium was a novel species belonging to the Sphingomonas and harbour linABCDE genes similar to those found in other HCH degraders. γ‐Pentachlorocyclohexene 1,2,4‐trichlorobenzene and chlorohydroquinone were identified as metabolites. Conclusions: The study demonstrates that HCH‐degrading bacteria can be identified from large environmental sample‐based dehalogenase enzyme assay. This kind of screening is more advantageous compared to selective enrichment as it is specific and rapid and can be performed in a high‐throughput manner to screen bacteria for chlorinated compounds. Significance and Impact of the Study: The chlorinated pesticide HCH is a persistent and toxic environmental pollutant which needs to be remediated. Isolation of diverse bacterial species capable of degrading all the isomers of HCH will help in large‐scale bioremediation in various parts of the world.  相似文献   

12.
Catabolic pathways for utilization of naphthalene (NAP), anthracene (ANT), phenanthrene (PHE), and fluoranthene (FLA) by Sphingomonas paucimobilis EPA505 were identified. Accumulation of catabolic intermediates was investigated with three classes of Tn5 mutants with the following polycyclic aromatic hydrocarbon (PAH)-negative phenotypes; (class I NAP(-) PHE(-) FLA(-), class II NAP(-) PHE(-), and class III FLA(-)). Class I mutant 200pbhA had a Tn5 insertion within a meta ring fission dioxygenase (pbhA), and a ferredoxin subunit gene (pbhB) resided directly downstream. Mutant 200pbhA and other class I mutants lost the ability to catalyze the initial dihydroxylation step and did not transform NAP, ANT, PHE, or FLA. Class I mutant 401 accumulated salicylic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-2-naphthoic acid, and hydroxyacenaphthoic acid during incubation with NAP, ANT, PHE, or FLA, respectively. Class II mutant 132pbhC contained the Tn5 insertion in an aldolase hydratase (pbhC) and accumulated what appeared to be meta ring fission products: trans-o-hydroxybenzylidene pyruvate, trans-o-hydroxynaphylidene pyruvate, and trans-o-hydroxynaphthyl-oxobutenoic acid when incubated with NAP, ANT, and PHE, respectively. When mutant 132pbhC was incubated with 1-hydroxy-2-naphthoic acid, it accumulated trans-o-hydroxybenzylidene pyruvate. Class III mutant 104ppdk had a Tn5 insertion in a pyruvate phosphate dikinase gene that affected expression of a FLA-specific gene and accumulated a proposed meta ring fission product; trans-o-hydroxyacenaphyl-oxobutenoic acid during incubation with FLA. Trans-o-hydroxyacenaphyl-oxobutenoic acid was degraded to acenaphthenone that accumulated with class III mutant 611. Acenaphthenone was oxidized via incorporation of one molecule of dioxygen by another oxygenase. 2,3-Dihydroxybenzoic acid was the final FLA-derived catabolic intermediate detected. Analysis of PAH utilization mutants revealed that there are convergent and divergent points involved in NAP, ANT, PHE, and FLA utilization by S. paucimobilis EPA505.  相似文献   

13.
Two mixed bacterial cultures (CB-BT and CI-AT) degraded phenanthrene when it was: (i) in the presence of either hexadecane as a non aqueous phase liquid or a montmorillonite–Al(OH)x-humic acid complex as a model organo-mineral matrix; (ii) sorbed to the complex, either alone or in the presence of hexadecane. The cultures had different kinetic behaviours towards phenanthrene with or without hexadecane. The degradation of Phe alone as well as that of Phe in hexadecane ended in 8 and 15 days with CB-BT and CI-AT cultures, respectively. Hexadecane increased Phe bioavailability for CI-AT bacteria which degraded Phe according to first-order kinetics. The same effect was observed for CB-BT bacteria, but with an initial 2 days lag phase and in accordance with zero-order kinetics. The presence of hexadecane did not affect the degradation of phenanthrene sorbed and aged on the complex by CI-AT culture. This capability was exhibited also after experimental aging of 30 days. The dynamics of the bacterial community composition was investigated through PCR-DGGE (denaturing gradient gel electrophoresis) of 16S rRNA gene fragments. Individual bands changed their intensity during the incubation time, implying that particular microbe’s relative abundance changed according to the culture conditions. Isolation of phenanthrene and/or hexadecane degraders was in accord with cultivation-independent data. Growth-dependent changes in the cell surface hydrophobicity of the two cultures and of the isolates suggested that modulation of cell surface hydrophobicity probably played an important role for an efficient phenanthrene assimilation/uptake.  相似文献   

14.
Zhong Y  Luan T  Lin L  Liu H  Tam NF 《Bioresource technology》2011,102(3):2965-2972
The effects of the mixed culture of Mycobacterium sp. strain A1-PYR and Sphingomonas sp. strain PheB4 on the degradation characteristics of single polycyclic aromatic hydrocarbon were investigated. In the mixed bacterial culture, phenanthrene, fluoranthene and pyrene were degraded by 100% at Day 3, 71.2% and 50% at Day 7, respectively. Compared to their respective pure cultures, the degradation of phenanthrene and fluoranthene decreased, but that of pyrene increased significantly. Based on GC-MS analysis, eight and six new metabolites were produced from the biodegradation of phenanthrene and fluoranthene, respectively, while only two new metabolites were formed from pyrene. To our knowledge, this is the first report that the mixed bacterial culture could increase the diversity of metabolites from PAH, but the diverse metabolite pattern was not necessarily beneficial to the degradation of the recalcitrant PAH. The enhancement on pyrene degradation was possibly attributed to the rapid growth of strain PheB4.  相似文献   

15.
Five sets of large and small subunits of terminal oxygenase (ahdA1[a-e] and ahdA2[a-e]) and a single gene set encoding ferredoxin (ahdA3) and ferredoxin reductase (ahdA4) were found to be scattered through 15.8- and 14-kb DNA fragments of phenanthrene-degrading Sphingobium sp. strain P2. RT-PCR analysis indicated the inducible and specific expression of ahdA3, ahdA4, and three sets of genes for terminal oxygenase (ahdA1[c-e] and ahdA2[c-e]) in this strain grown on phenanthrene. The biotransformation experiments with resting cells of Escherichia coli JM109 harboring recombinant ahd genes revealed that AhdA2cA1c, AhdA1dA2d, and AhdA1eA2e can all function as a salicylate 1-hydroxylase which converts salicylate, a metabolic intermediate of phenanthrene, to catechol in cooperation with the electron transport proteins AhdA3A4. The first two oxygenases exhibited a broad range of substrate specificities such that they also catalyzed the hydroxylation of methyl- and chloro-substituted salicylates to produce their corresponding substituted catechols.  相似文献   

16.
Sphingomonas yanoikuyae B1 is able to utilize toluene, m-xylene, p-xylene, biphenyl, naphthalene, phenanthrene, and anthracene as sole sources of carbon and energy for growth. A forty kilobase region of DNA containing most of the genes for the degradation of these aromatic compounds was previously cloned and sequenced. Insertional inactivation of bphC results in the inability of B1 to grow on both polycyclic and monocyclic compounds. Complementation experiments indicate that the metabolic block is actually due to a polar effect on the expression of bphA3, coding for a ferredoxin component of a dioxygenase. Lack of the ferredoxin results in a nonfunctional polycyclic aromatic hydrocarbon dioxygenase and a nonfunctional toluate dioxygenase indicating that the electron transfer components are capable of interacting with multiple oxygenase components. Insertional inactivation of a gene for a dioxygenase oxygenase component downstream of bphA3 had no apparent effect on growth besides a polar effect on nahD which is only needed for growth of B1 on naphthalene. Insertional inactivation of either xylE or xylG in the meta-cleavage operon results in a polar effect on bphB, the last gene in the operon. However, insertional inactivation of xylX at the beginning of this cluster of genes does not result in a polar effect suggesting that the genes for the meta-cleavage pathway, although colinear, are organized in at least two operons. These experiments confirm the biological role of several genes involved in metabolism of aromatic compounds by S. yanoikuyae B1 and demonstrate the interdependency of the metabolic pathways for polycyclic and monocyclic aromatic hydrocarbon degradation. Received 13 May 1999/ Accepted in revised form 05 July 1999  相似文献   

17.
Identification of new metabolites and demonstration of key enzyme activities support and extend the pathways previously reported for fluorene metabolism by Arthrobacter sp. strain F101. Washed-cell suspensions of strain F101 with fluorene accumulated 9-fluorenone, 4-hydroxy-9-fluorenone, 3-hydroxy-1-indanone, 1-indanone, 2-indanone, 3-(2-hydroxyphenyl) propionate, and a compound tentatively identified as a formyl indanone. Incubations with 2-indanone produced 3-isochromanone. The growth yield with fluorene as a sole source of carbon and energy corresponded to an assimilation of about 34% of fluorene carbon. About 7.4% was transformed into 9-fluorenol, 9-fluorenone, and 4-hydroxy-9-fluorenone. Crude extracts from fluorene-induced cells showed 3,4-dihydrocoumarin hydrolase and catechol 2,3-dioxygenase activities. These results and biodegradation experiments with the identified metabolites indicate that metabolism of fluorene by Arthrobacter sp. strain F101 proceeds through three independent pathways. Two productive routes are initiated by dioxygenation at positions 1,2 and 3,4, respectively. meta cleavage followed by an aldolase reaction and loss of C-1 yield the detected indanones. Subsequent biological Baeyer-Villiger reactions produce the aromatic lactones 3,4-dihydrocoumarin and 3-isochromanone. Enzymatic hydrolysis of the former gives 3-(2-hydroxyphenyl) propionate, which could be a substrate for a beta oxidation cycle, to give salicylate. Further oxidation of the latter via catechol and 2-hydroxymuconic semialdehyde connects with the central metabolism, allowing the utilization of all fluorene carbons. Identification of 4-hydroxy-9-fluorenone is consistent with an alternative pathway initiated by monooxygenation at C-9 to give 9-fluorenol and then 9-fluorenone. Although dioxygenation at 3,4 positions of the ketone apparently occurs, this reaction fails to furnish a subsequent productive oxidation of this compound.  相似文献   

18.
固定化微生物降解土壤中菲和芘的研究   总被引:9,自引:0,他引:9  
1 引  言固定化微生物技术是 2 0世纪 70年代兴起的一种新型生物技术 ,目前已成为国内外学者的研究热点[8] ,现被广泛应用于处理化学工业废水 .其优点是可以大幅度提高参加反应微生物浓度 ;减少活性污泥数量 ;微生物被高分子材料包埋 ,耐环境冲击 ;根据需要选择有效微生物 ,可降低二次污染等特点 ,因而受到越来越多的关注[4,6 ,10 ] .包埋法是固定化技术最为普遍的使用方法 ,包埋载体的选择是固定化微生物的关键 ,理想的载体具有对微生物无毒性 ,传质性能好 ,性质稳定 ,不易被微生物分解 ,强度高寿命长和价格低廉等优点[2 ] .迄今 ,国内…  相似文献   

19.
Liu J  Min H  Ye L 《Biodegradation》2008,19(5):695-703
To assess the co-catabolism of phenanthrene and tricyclazole in different samples, the interaction during the degradation of phenanthrene and tricyclazole were investigated in medium, soil and soil/spent mushroom compost (SMC) mixture. Generally, tricyclazole showed a negative influence on the activity of phenanthrene dioxygenase and it inhibited the degradation of phenanthrene prominently, both in cultures of phenanthrene catabolic isolates (Sphingomonas paucimobilis ZX4 and the mixed flora M1) and soils, while a similar inhibition caused by phenanthrene was also found for the degradation of tricyclazole in soil/SMC. However, the inhibition effect on phenanthrene degradation was eliminated in soil/SMC mixture, due to the abundant microorganisms and enormous catabolic potential in SMC. Furthermore, it was proved that the negative influence between phenanthrene and tricyclazole was most likely derived from the molecular similarity and it tended to decrease with improved microbial diversity in environment.  相似文献   

20.
In the present paper, the degradation of phenanthrene, a model polycyclic aromatic hydrocarbon compound, by the Mycobacterium strain 6PY1 was optimized in a biphasic culture medium. The optimization and modeling were performed using the design of experiments methodology. The temperature, the silicone oil/mineral salts medium volume ratio, and the initial cell concentration, were used as the central composite design parameters. In all experiments, the phenanthrene was degraded to undetectable levels. Response surface methodology was successfully employed to derive an empirical model describing the rate and time of degradation and to deduce the optimal degradation conditions. As a result of the optimization processes, the optimal responses for the degradation rate, the volumetric degradation rate, and the 90% degradation time were estimated to be 0.172 mg h−1, 22 mg l−1 h−1, and 18 h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号