首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence and expression of mRNA homologous to a cDNA encoding a non-photosynthetic ferredoxin (Fd1) from Citrus fruit was investigated. The non-photosynthetic nature of this ferredoxin was deduced from: (1) amino acid sequence alignments showing better scores with non-photosynthetic than with photosynthetic ferredoxins, (2) higher expression in tissues containing plastids other than chloroplast such as petals, young fruits, roots and peel of fully coloured fruits, and (3) the absence of light-dark regulation characteristic of photosynthetic ferredoxins. In a phylogenetic tree constructed with higher-plant ferredoxins, Citrus fruit ferredoxin clustered together with root ferredoxins and separated from the photosynthetic ferredoxins. Non photosynthetic (root and fruit) ferredoxins, but not the photosynthetic ferredoxins, have their closest homologs in cyanobacteria. Analysis of ferredoxin genomic organization suggested that non-photosynthetic ferredoxins exist in Citrus as a small gene family. Expression of Fd1 is developmentally regulated during flower opening and fruit maturation, both processes may be mediated by ethylene in Citrus. Exogenous ethylene application also induced the expression of Fd1 both in flavedo and leaves. The induction of non-photosynthetic ferredoxins could be related with the demand for reducing power in non-green, but biosynthetically active, tissues.  相似文献   

2.
Ferredoxins are proteins that participate in photosynthesis and in other processes that require reducing equivalents, such as the reduction of nitrogen or fatty acid desaturation. Two classes of ferredoxins have been described in plants: light-regulated photosynthetic ferredoxins and heterotrophic ferredoxins whose activity is not influenced by light. Genes encoding the two forms of ferredoxin have been cloned and characterized in developing sunflower cotyledons. Here, these genes were overexpressed in Escherichia coli and they were purified by ion exchange and size exclusion chromatography to study their capacity to supply electrons to two different sunflower desaturases: soluble stearoyl-ACP desaturase from sunflower cotyledons, and membrane bound desaturase FAD7 expressed in yeast. In both cases photosynthetic ferredoxin was the form that promoted the strongest desaturase activity.  相似文献   

3.
Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.3) isoforms, two cytosolic (HacPGK1 and HacPGK2) and one plastidic (HapPGK), were cloned and characterized from developing sunflower (Helianthus annuus L.) seeds. The expression profiles of these genes showed differences in heterotrophic tissues, such as developing seeds and roots, where HacPGK1 was predominant, while HapPGK was highly expressed in photosynthetic tissues. The cDNAs were expressed in Escherichia coli, and the corresponding proteins purified to electrophoretic homogeneity, using immobilized metal ion affinity chromatography, and biochemically characterized. Despite the high level of identity between sequences, the HacPGK1 isoform showed strong differences in terms of specific activity, temperature stability and pH sensitivity in comparison to HacPGK2 and HapPGK. A polyclonal immune serum was raised against the purified HacPGK1 isoform, which showed cross-immunoreactivity with the other PGK isoforms. This serum allowed the localization of high expression levels of PGK isozymes in embryo tissues.  相似文献   

4.
《BBA》2019,1860(11):148084
Photosynthetic [2Fe-2S] plant-type ferredoxins have a central role in electron transfer between the photosynthetic chain and various metabolic pathways. Several genes are coding for [2Fe2S] ferredoxins in cyanobacteria, with four in the thermophilic cyanobacterium Thermosynechococcus elongatus. The structure and functional properties of the major ferredoxin Fd1 are well known but data on the other ferredoxins are scarce. We report the structural and functional properties of a novel minor type ferredoxin, Fd2 of T. elongatus, homologous to Fed4 from Synechocystis sp. PCC 6803. Remarkably, the midpoint potential of Fd2, Em = −440 mV, is lower than that of Fd1, Em = −372 mV. However, while Fd2 can efficiently react with photosystem I or nitrite reductase, time-resolved spectroscopy shows that Fd2 has a very low capacity to reduce ferredoxin-NADP+ oxidoreductase (FNR). These unique Fd2 properties are discussed in relation with its structure, solved at 1.38 Å resolution. The Fd2 structure significantly differs from other known ferredoxins structures in loop 2, N-terminal region, hydrogen bonding networks and surface charge distributions. UV–Vis, EPR, and Mid- and Far-IR data also show that the electronic properties of the [2Fe2S] cluster of Fd2 and its interaction with the protein differ from those of Fd1 both in the oxidized and reduced states. The structural analysis allows to propose that valine in the motif Cys53ValAsnCys56 of Fd2 and the specific orientation of Phe72, explain the electron transfer properties of Fd2. Strikingly, the nature of these residues correlates with different phylogenetic groups of cyanobacterial Fds. With its low redox potential and its discrimination against FNR, Fd2 exhibits a unique capacity to direct efficiently photosynthetic electrons to metabolic pathways not dependent on FNR.  相似文献   

5.
Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl‐CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis.  相似文献   

6.
In the C(4) plant maize (Zea mays L.), two ferredoxin isoproteins, Fd I and Fd II, are expressed specifically in mesophyll and bundle-sheath cells, respectively. cDNAs for these ferredoxins were introduced separately into the cyanobacterium Plectonema boryanum with a disrupted endogenous ferredoxin gene, yielding TM202 and KM2-9 strains expressing Fd I and Fd II. The growth of TM202 was retarded under high light (130 micromol/m(2)/s), whereas KM2-9 grew at a normal rate but exhibited a nitrogen-deficient phenotype. Measurement of photosynthetic O(2) evolution revealed that the reducing power was not efficiently partitioned into nitrogen assimilation in KM2-9. After starvation of the cells in darkness, the P700 oxidation level under far-red illumination increased significantly in TM202. However, it remained low in KM2-9, indicating an active cyclic electron flow. In accordance with this, the cellular ratio of ATP/ADP increased and that of NADPH/NADP(+) decreased in KM2-9 as compared with TM202. These results demonstrated that the two cell type-specific ferredoxins differentially modulate electron flow around photosystem I.  相似文献   

7.
8.
Several forms (isoproteins) of ferredoxin in roots, leaves, and green and red pericarps in tomato plants (Lycopersicon esculentum Mill.) were earlier identified on the basis of N-terminal amino acid sequence and chromatographic behavior (Green et al. 1991). In the present study, a large scale preparation made possible determination of the full length amino acid sequence of the two ferredoxins from leaves. The ferredoxins characteristic of fruit and root were sequenced from the amino terminus to the 30th residue or beyond. The leaf ferredoxins were confirmed to be expressed in pericarp of both green and red fruit. The ferredoxins characteristic of fruit and root appeared to be restricted to those tissue. The results extend earlier findings in demonstrating that ferredoxin occurs in the major organs of the tomato plant where it appears to function irrespective of photosynthetic competence.Abbreviations CBB Coomassie brilliant blue R-250 - Cm Carboxymethylated - Fd Ferredoxin - FNR ferredoxin-NADP+ oxidoreductase - FPLC Fast protein liquid chromatography - HPLC High performance liquid chromatography - rt root  相似文献   

9.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1:0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

10.
Ferredoxin (Fd) is the major iron-containing protein in photosynthetic organisms and is central to reductive metabolism in the chloroplast. The Chlamydomonas reinhardtii genome encodes six plant type [Fe2S2] ferredoxins, products of PETF, FDX2–FDX6. We performed the functional analysis of these ferredoxins by localizing Fd, Fdx2, Fdx3, and Fdx6 to the chloroplast by using isoform-specific antibodies and monitoring the pattern of gene expression by iron and copper nutrition, nitrogen source, and hydrogen peroxide stress. In addition, we also measured the midpoint redox potentials of Fd and Fdx2 and determined the kinetic parameters of their reactions with several ferredoxin-interacting proteins, namely nitrite reductase, Fd:NADP+ oxidoreductase, and Fd:thioredoxin reductase. We found that each of the FDX genes is differently regulated in response to changes in nutrient supply. Moreover, we show that Fdx2 (Em = −321 mV), whose expression is regulated by nitrate, is a more efficient electron donor to nitrite reductase relative to Fd. Overall, the results suggest that each ferredoxin isoform has substrate specificity and that the presence of multiple ferredoxin isoforms allows for the allocation of reducing power to specific metabolic pathways in the chloroplast under various growth conditions.Ferredoxins are small (∼11,000-kDa), soluble, iron-sulfur cluster-containing proteins with strongly negative redox potentials (−350 to −450 mV) that function as electron donors at reductive steps in various metabolic pathways (13). In photosynthetic organisms, the well studied ferredoxin (Fd4; the product of the PETF gene) is the most abundant iron-containing protein in the chloroplast and is central to the distribution of photosynthetically derived reductive power (4).The most well known Fd-dependent reaction is the transfer of electrons from photosystem I (PSI) to NADPH, catalyzed by Fd:NADP+ oxidoreductase (FNR). The NADPH produced by this reaction donates electrons to the only reductant-requiring step in the Calvin cycle and other steps in anabolic pathways that require NADPH as reductant. In addition, reduced Fd directly donates electrons to other metabolic pathways by interacting with various enzymes in the chloroplast. This includes Fd:thioredoxin reductase (FTR), which converts a light-driven electron signal into a thiol signal that is transmitted to thioredoxins (TRXs) present in the plastid as different types (or different isoforms). Once reduced, TRXs interact with specific disulfide bonds on target enzymes, modulating their activities (5). Other Fd targets include hydrogenase, which is responsible for hydrogen production in anaerobic conditions in green algae; glutamine-oxoglutarate amidotransferase in amino acid synthesis; nitrite and sulfite reductases in nitrate and sulfate assimilation, respectively; stearoyl-ACP Δ9-desaturase in fatty acid desaturation; and phycocyanobilin:Fd oxidoreductase in synthesis of phytochromobilin (6). Fd also functions in non-photosynthetic cells. Here, FNR catalyzes the reduction of Fd by NADPH produced in the oxidative pentose phosphate pathway, enabling Fd-dependent metabolism to occur in the dark (7, 8).The single-celled green alga, Chlamydomonas reinhardtii is an excellent reference organism for studying both metabolic adaptation to nutrient stress and photosynthesis (913). The Chlamydomonas genome encodes six highly related plant type ferredoxin genes (9). Until recently, only the major photosynthetic ferredoxin, Fd (encoded by PETF), which mediates electron transfer between PSI and FNR, had been characterized in detail (14).Many land plants are known to have multiple ferredoxins. Typically, they are differently localized on the basis of their function. Photosynthetic ferredoxins reduce NADP+ at a faster rate and are localized to the leaves, whereas non-photosynthetic ferredoxins are more efficiently reduced by NADPH and are localized to the roots. Arabidopsis thaliana has a total of six ferredoxin isoforms (15). Of these, two are photosynthetic and localized in the leaves. The most abundant, AtFd2, is involved in linear electron flow, and the less abundant (5% of the ferredoxin pool), AtFd1, has been implicated in cyclic electron flow (16). There is one non-photosynthetic ferredoxin located in the roots, AtFd3, which is nitrate-inducible. This protein has higher electron transfer activity with sulfite reductase in in vitro assays compared with other Arabidopsis ferredoxin isoforms, suggesting in vivo function of AtFd3 in nitrate and sulfate assimilation (15, 17). In addition, there is one evolutionarily distant ferredoxin, AtFd4, of unknown function with a more positive redox potential present in the leaves and two other proteins which are “ferredoxin-like” and uncharacterized (15). Zea mays has four ferredoxin isoforms, two photosynthetic and two non-photosynthetic (18). One of the non-photosynthetic isoforms is specifically induced by nitrite, suggestive of a role in nitrate metabolism (19). A cyanobacterium, Anabaena 7120, has two ferredoxins, vegetative and heterocyst type (by analogy to leaf and root types, respectively). The heterocyst type is present only in cells that have differentiated into nitrogen-fixing cells, indicating that this form may serve to transfer electrons to nitrogenase (20).We hypothesize that the presence of as many as six ferredoxin isoforms in a single-celled organism like C. reinhardtii allows for the differential regulation of each isoform and therefore the prioritization of reducing power toward certain metabolic pathways under changing environmental conditions. To test this hypothesis, expression of the genes (PETF and FDX2–FDX6) encoding the six ferredoxin isoforms in Chlamydomonas reinhardtii was monitored under various conditions in which well characterized ferredoxin-dependent enzymes are known to be expressed. In addition, we also analyzed the interaction of Fd and Fdx2 with several ferredoxin-interacting proteins, such as NiR, FNR, and FTR, and determined the kinetic parameters of the corresponding reactions.We found that each of the FDX genes is indeed differently regulated in response to changes in nutrient supply. In the case of FDX2 whose product is most similar to classical Fd, we suggest that it has specificity for nitrite reductase based on its pattern of expression and activity with nitrite reductase.  相似文献   

11.
 Ferredoxins that contain 2[4Fe-4S]2+/+ clusters can be divided into two classes. The "clostridial-type" ferredoxins have two CysXXCysXXCysXXXCysPro motifs. The "photosynthetic bacterial and nif-related" ferredoxins have one motif of that type and one more unusual CysXXCysX7–9CysXXXCysPro motif. In Azotobacter vinelandii three gene sequences have been reported that contain the latter motif, but until now none of the gene products has been purified. Here we report the purification of a small anionic [Fe-S] protein with yields of ∼3 mg per 500 g cell paste. NH2-terminal sequence analysis shows that this protein is the product of a previously sequenced A. vinelandii gene that is found upstream of fixA and is cotranscribed with fixABCX. That gene was originally named fixP, but since that gene designation is now commonly used for a very different cb-type cytochrome oxidase we have renamed the gene fixFd and its product Fix Fd. Its sequence places Fix Fd in the class of "photosynthetic bacterial and nif-related" 2[4Fe-4S]2+/1+ ferredoxins that includes Chromatium vinosum ferredoxin. Studies of the purified protein by Fe analysis, absorption, CD and EPR spectroscopies and electrochemistry confirm this characterization; the reduction potentials of the two clusters are –440 mV vs SHE. The fact that A. vinelandii synthesizes three different proteins with the same sequence motif, each of which is likely to have a different function, shows that although sequence motifs may be used reliably to classify ferredoxins by cluster type they cannot yet be used reliably for classifying ferredoxins by function. Received: 31 January 1997 / Accepted: 9 June 1997  相似文献   

12.
Abstract The cyanobacterium Nostoc sp. strain PCC 73102, cultured under nitrogen-fixing conditions, was investigated for the occurrence of ferrodoxins by SDS-PAGE/Western immunoblots using antisera directed against both a major plant-type and a bacterial-type ferredoxin purified from Anabaena variabilis . Immunocytological labelling and transmission electron microscopy were used to study the distribution of both types of ferredoxins in the Nostoc cells. SDS-PAGE/Western immunoblots revealed two proteins/polypeptides in the Nostoc strain, immunologically related to two soluble ferredoxins purified from Anabaena variabilis : the major plant-type ferredoxin (Fd I) and a bacterial-type ferredoxin (Fd III). Immunolocalization showed a uniform distribution of the plant-type and the bacterial-type ferredoxin in both the photosynthetic vegetative cells and in the nitrogen-fixing heterocysts, with no specific association with any subcellular inclusions. Using the particle analysis of an image processor, the labelling associated with the vegetative cells, expressed as number of gold particles per cell area, was found to be only slightly higher (1.2x) or almost twice as high (1.9x) compared to the heterocysts for the major plant-type and the bacterial-type ferredoxin, respectively.  相似文献   

13.
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.  相似文献   

14.
Two plant-type ferredoxins were isolated and purified from a blue-green alga, Nostoc verrucosum. They were separable by chromatography on a DEAE-cellulose column. The slow-moving band was designated ferredoxin I (Fd I) and the fast-moving band was ferredoxin II (Fd II). The ratio of the yield of ferredoxins I and II was about 1 : 0.84. Both ferredoxins had absorption spectra similar to those of plant-type ferredoxins. Two atoms of non-heme iron and two of labile sulfur were found per mol of both ferredoxin I and ferredoxin II. Their molecular weights were identical and estimated to be about 18 000 by a gel filtration method. The biochemical activities of these Nostoc ferredoxins were studied: the NADP photoreduction activity on one hand and the NADP-cytochrome c reductase activity on the other.  相似文献   

15.
The amino acid sequences of ferredoxins (Fd A and Fd B) from Japanese taro (Colocasia esculenta Schott) were determined. They consisted of single polypeptide chains of 98 residues, and both Fds had molecular masses of 10700 and 10500, respectively. There was a 92% homology between the sequences of the isoproteins (Fd A and Fd B). These sequences were compared with those of the closely related plant Fds and their phylogenetic tree was constructed. Two ferredoxin isoproteins from Hawaiian taro (Colocasia esculenta Schott) were also isolated and their N-terminal sequences were determined to be identical to those of Japanese taro.  相似文献   

16.
Pairs of two molecular species of soluble chloroplast-type ferredoxins(Fd I and Fd II) from Nostoc muscorum and Aphanothece sacrumwere used to examine and compare the abilities of ferredoxinto substitute for spinach ferredoxin in the photoreduction ofNADP+ by spinach chloroplasts or N. muscorum membrane fragmentsand to link the reducing power of illuminated spinach chloroplaststo the Bacillus polymyxa nitrogenase system. Ferredoxins II of Nostoc and Aphanothece showed rather low activitiesin NADP+ photoreduction and nitrogenase system with spinachchloroplasts as the photosensitizer, compared to other ferredoxins.However, there was no difference between two ferredoxins (FdI and Fd II) from Nostoc in NADP+ photoreduction by photosyntheticmembrane fragments prepared from the same organism, N. muscorum. The biological significance of two molecular species of ferredoxinsin one organism could be ascribed to the different contributionof each ferredoxin to certain biological reactions in whichferredoxin functioned as an electron carrier. (Received November 4, 1980; Accepted January 9, 1981)  相似文献   

17.
Maize (Zea mays L.) has two types of ferredoxin (Fd) differentially expressed in photosynthetic and nonphotosynthetic organs. A cDNA fragment encoding the mature polypeptide of Fd III, an Fd isoprotein of the nonphotosynthetic type, was expressed in Escherichia coli, and the Fd was synthesized as a holo-form assembled with the [2Fe-2S] cluster, which was completely identical with authentic Fd III prepared from maize roots. This expression system made it possible to prepare Fd present at fairly low levels in plants in amounts sufficient for functional and structural studies. Comparison of electron transfer activity of Fd III with that of Fd I, an Fd isoprotein of the photosynthetic type, showed that Fd III was superior as an electron acceptor from NADPH, and Fd I was superior as an electron donor for NADP+, in reactions catalyzed by Fd-NADP+ reductase from maize leaf. The circular dichronism spectra of the two Fds also indicated a subtle difference in the geometry of their iron-sulfur clusters. These results are consistent with the view that photosynthetic and nonphotosynthetic Fds may be functionally differentiated. An artificial chimeric Fd, Fd III/Fd I, whose amino-terminal and carboxylterminal halves are derived from the corresponding regions of Fd III and Fd I, respectively, showed an activity and CD spectrum significantly similar to those of Fd I. This suggests that 18 amino acid substitutions between Fd III and Fd III/Fd I alter the properties of Fd III so that they resemble those of Fd I.  相似文献   

18.
19.
Ferredoxin isolated from a blue-green alga, Nostoc sp., was purified and crystallized. The absorption spectrum of Nostoc ferredoxin had, in the oxidized state, peaks at 276, 331, 423, and 470 nm, a pattern characteristic of chloroplast-type ferredoxin. The 423:276 absorption ratio was 0.57. The midpoint oxidation-reduction potential of Nostoc ferredoxin was found to be –406 mV, at pH 7.5. Nostoc ferredoxin mediated the photoreduction of NADP by isolated Nostoc chromato-phores and spinach chloroplasts from which the native ferredoxin was removed. The molar ratio of Nostoc ferredoxin to chlorophyll a was about 1:50, a ratio higher than usually found in photosynthetic cells. The possible evolutionary significance of the properties of Nostoc ferredoxin compared with those of ferredoxins from other photosynthetic organisms is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号