首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Induction of G(1) arrest by TGF-beta correlates with the regulation of p21(Cip1) and p27(Kip1), members of the Cip/Kip family of cyclin-dependent kinase inhibitors (cki). However, no definitive evidence exists that these proteins play a causal role in TGF-beta(1)-induced growth arrest in lymphocytes. In this report we show the suppression of cell cycle progression by TGF-beta is diminished in T cells from mice deficient for both p21(Cip1) and p27(Kip1) (double-knockout (DKO)) only when activated under conditions of optimal costimulation. Although there is an IL-2-dependent enhanced proliferation of CD8(+) T cells from DKO mice, TGF-beta is able to maximally suppress the proliferation of DKO T cells when activated under conditions of low costimulatory strength. We also show that the induction of p15(Ink4b) in T cells stimulated in the presence of TGF-beta is not essential, as TGF-beta also efficiently suppressed proliferation of T cells from p15(Ink4b-/-) mice. Finally, although these cki are dispensable for the suppression of T cell proliferation by TGF-beta, we now describe a Smad3-dependent down-regulation of cdk4, suggesting a potential mechanism underlying to resistance of Smad3(-/-) T cells to the induction of growth arrest by TGF-beta. In summary, the growth suppressive effects of TGF-beta in naive T cells are a function of the strength of costimulation, and alterations in the expression of cki modify the sensitivity to TGF-beta by lowering thresholds for a maximal mitogenic response.  相似文献   

5.
6.
The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or “pilots”, to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.  相似文献   

7.
Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21Waf1/Cip1 mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21Waf1/Cip1 induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.  相似文献   

8.
The human cathelicidin LL‐37, a pleiotropic host defense peptide, is down‐regulated in gastric adenocarcinomas. We therefore investigated whether this peptide suppresses gastric cancer growth. LL‐37 lowered gastric cancer cell proliferation and delayed G1‐S transition in vitro and inhibits the growth of gastric cancer xenograft in vivo. In this connection, LL‐37 increased the tumor‐suppressing bone morphogenetic protein (BMP) signaling, manifested as an increase in BMP4 expression and the subsequent Smad1/5 phosphorylation and the induction of p21Waf1/Cip1. The anti‐mitogenic effect, Smad1/5 phosphorylation, and p21Waf1/Cip1 up‐regulation induced by LL‐37 were reversed by the knockdown of BMP receptor II. The activation of BMP signaling was paralleled by the inhibition of chymotrypsin‐like and caspase‐like activity of proteasome. In this regard, proteasome inhibitor MG‐132 mimicked the effect of LL‐37 by up‐regulating BMP4 expression and Smad1/5 phosphorylation. Further analysis of clinical samples revealed that LL‐37 and p21Waf1/Cip1 mRNA expressions were both down‐regulated in gastric cancer tissues and their expressions were positively correlated. Collectively, we describe for the first time that LL‐37 inhibits gastric cancer cell proliferation through activation of BMP signaling via a proteasome‐dependent mechanism. This unique biological activity may open up novel therapeutic avenue for the treatment of gastric cancer. J. Cell. Physiol. 223: 178–186, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
The cyclin-dependent kinase inhibitors interact with cyclin-cdk complexes to arrest mitogen-stimulated transit through the cell cycle, but these proteins have recently been shown to have positive regulatory effects on cyclin-cdk complex activity as well. Most of the previous work in this area has focussed on the finding that overexpressed p21(Waf1/Cip1) causes growth arrest. However, mice lacking p21(Waf1/Cip1) showed normal development with no aberrancy in their cell cycles, and antisense p21(Waf1/Cip1) has only been shown to prevent cell cycle arrest, leading to the conclusion that the cyclin kinase inhibitors may not be required for cell cycle progression. We found that transfection of several lines of vascular smooth muscle cells with antisense oligodeoxynucleotide specific to p21(Waf1/Cip1) correlates with decreased cyclin D1/cdk 4, but not cyclin E/cdk 2, association, yet, unexpectedly, results in dose-dependent inhibition of platelet-derived growth factor-BB-stimulated DNA synthesis and cell proliferation. Our finding that p21(Waf1/Cip1) exhibits permissive effects on growth factor-induced vascular smooth muscle cell cycle progression, such that its presence is required for growth factor-induced proliferation, is the first such report and opens up a fertile area of research relevant to diseases involving vascular cell proliferation.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) is a potent inhibitor of pancreatic acinar cell growth. Smad4 is a central mediator in the TGF-beta signaling pathway. To study the effect of Smad4 on pancreatic growth, cell cycle protein expression, and the expression of a TGF-beta-responsive promoter in vitro, we constructed an adenovirus containing dominant-negative COOH terminal truncated Smad4 (AddnSmad4) downstream of the rat elastase promoter. Acinar cells expressed dominant-negative Smad4 within 8 h after infection, and expression persisted for 72 h. Mouse pancreatic acini were infected with either AddnSmad4 or control adenovirus expressing green fluorescent protein, and TGF-beta was added 8 h after infection. Acinar cells were then incubated for 1, 2, or 3 days, and [(3)H]thymidine incorporation was determined. AddnSmad4 significantly reduced TGF-beta inhibition of [(3)H]thymidine incorporation, with maximal effects on day 3. AddnSmad4 also completely blocked TGF-beta-mediated growth inhibition in the presence of basic fibroblast growth factor. We next examined the effects of AddnSmad4 on TGF-beta-induced expression of the cell cycle regulatory proteins p21(Cip1) and p27(Kip1). TGF-beta induced upregulation of p21(Cip1), which was completely blocked by AddnSmad4. AddnSmad4 also inhibited TGF-beta-induced expression of the TGF-beta-responsive luciferase reporter 3TP-Lux. These results show that Smad4 is essential in TGF-beta-mediated signaling in pancreatic acinar cells.  相似文献   

13.
CDK inhibitors: cell cycle regulators and beyond   总被引:11,自引:0,他引:11  
  相似文献   

14.
15.
16.
Integrin-extracellular matrix interactions play important roles in the coordinated integration of external and internal cues that are essential for proper development. To study the role of beta1 integrin in the mammary gland, Itgbeta1(flox/flox) mice were crossed with WAPiCre transgenic mice, which led to specific ablation of beta1 integrin in luminal alveolar epithelial cells. In the beta1 integrin mutant mammary gland, individual alveoli were disorganized resulting from alterations in cell-basement membrane associations. Activity of focal adhesion kinase (FAK) was also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in beta1 integrin mutant glands, which correlated with a specific increase of p21 Cip1 expression. In a p21 Cip1 null background, there was a partial rescue of BrdU incorporation, providing in vivo evidence linking p21 Cip1 to the proliferative defect observed in beta1 integrin mutant glands. A connection between p21 Cip1 and beta1 integrin as well as FAK was also established in primary mammary cells. These results point to the essential role of beta1 integrin signaling in mammary epithelial cell proliferation.  相似文献   

17.
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells.  相似文献   

18.
Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.  相似文献   

19.
20.
Signaling via the phosphoinositide 3-kinase (PI3K)/AKT pathway is crucial for the regulation of endothelial cell (EC) proliferation and survival, which involves the AKT-dependent phosphorylation of the DNA repair protein p21(Cip1) at Thr-145. Because p21(Cip1) is a short-lived protein with a high proteasomal degradation rate, we investigated the regulation of p21(Cip1) protein levels by PI3K/AKT-dependent signaling. The PI3K inhibitors Ly294002 and wortmannin reduced p21(Cip1) protein abundance in human umbilical vein EC. However, mutation of the AKT site Thr-145 into aspartate (T145D) did not increase its protein half-life. We therefore investigated whether a kinase downstream of AKT regulates p21(Cip1) protein levels. In various cell types, AKT phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). Upon serum stimulation of EC, GSK-3beta was phosphorylated at Ser-9. Site-directed mutagenesis revealed that GSK-3 in vitro phosphorylated p21(Cip1) specifically at Thr-57 within the Cdk binding domain. Overexpression of GSK-3beta decreased p21(Cip1) protein levels in EC, whereas the specific inhibition of GSK-3 with lithium chloride interfered with p21(Cip1) degradation and increased p21(Cip1) protein about 10-fold in EC and cardiac myocytes (30 mm, p < 0.001). These data indicate that GSK-3 triggers p21(Cip1) degradation. In contrast, stimulation of AKT increases p21(Cip1) via inhibitory phosphorylation of GSK-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号