首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.— Tradeoffs in performance or fitness across environments have important implications regarding the nature of evolutionary constraints. It remains controversial whether tradeoffs such as these reflect genetic correlations that are genuine evolutionary constraints. However, if such long-term genetic constraints do exist, they must be due to underlying pleiotropy such that alleles that confer high performance in one environment invariably confer low performance in another. The distribution of genetic correlations within and among populations can provide insight about the existence of such pleiotropic tradeoffs. The long-term association of certain teleost fish taxa with particular abiotic environments suggests that tradeoffs in performance across environments have constrained the geographic distribution of those taxa. Here we report the results of an experiment in which we artificially selected on acute heat- and cold-stress tolerance in two stocks of the poeciliid fish Heterandria formosa from source populations with different thermal histories. Unexpectedly, we observed no direct responses to selection. Under certain conditions, fish from the different source populations differed significantly in cold tolerance, but not in heat tolerance. The results suggest there are no strong pleiotropic tradeoffs between heat- and cold-stress tolerance in these populations.  相似文献   

2.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

3.
Aims Foliar herbivory and water stress may affect floral traits attractive to pollinators. Plant genotypes may differ in their responses to the interplay between these factors, and evolution of phenotypic plasticity could be expected, particularly in heterogeneous environments. We aimed at evaluating the effects of simulated herbivory and experimental drought on floral traits attractive to pollinators in genetic families of the annual tarweed Madia sativa, which inhabits heterogeneous environments in terms of water availability, herbivore abundance and pollinator abundance.Methods In a greenhouse experiment with 15 inbred lines from a M. sativa population located in central Chile (Mediterranean-type climate), we measured the effects of apical bud damage and reduced water availability on: number of ray florets per flower head, length of ray florets, flower head diameter, number of open flower heads per plant, flowering plant height and flowering time.Important findings Apical damage and water shortage reduced phenotypic expression of floral traits attractive to pollinators via additive and non-additive effects. Plants in low water showed decreased height and had fewer and shorter ray florets, and fewer and smaller flower heads. Damaged plants showed delayed flowering, were less tall, and showed shorter ray florets and smaller flower heads. The number of ray florets was reduced by damage only in the low water treatment. Plant height, flowering time and number of flower heads showed among-family variation. These traits also showed genetic variation for plasticity to water availability. Ray floret length, flower head size and time to flowering showed genetic variation for plastic responses to apical damage. Plasticity in flowering time may allow M. sativa to adjust to the increased aridity foreseen for its habitat. Because genetic variation for plastic responses was detected, conditions are given for evolutionary responses to selective forces acting on plastic traits. We suggest that the evolution of adaptive floral plasticity in M. sativa in this ecological scenario (heterogeneous environments) would result from selective forces that include not only pollinators but also resource availability and herbivore damage.  相似文献   

4.
We estimated genetic and environmental variance components for developmental time and dry weight at eclosion in Drosophila melanogaster raised in ten different environments (all combinations of 22, 25 and 28 degrees C and 0.5, 1 and 4% yeast concentration, and 0.25% yeast at 25 degrees C). We used six homozygous lines derived from a natural population for complete diallel crosses in each environment. Additive genetic variances were consistently low for both traits (h2 around 10%). The additive genetic variance of developmental time was larger at lower yeast concentrations, but the heritability did not increase because other components were also larger. The additive genetic effects of the six parental lines changed ranks across environments, suggesting a mechanism for the maintenance of genetic variation in heterogenous environments. The variance due to non-directional dominance was small in most environments. However, there was directional dominance in the form of inbreeding depression for both traits. It was pronounced at high yeast levels and temperatures but disappeared when yeast or temperature were decreased. This meant that the heterozygous flies were more sensitive to environmental differences than homozygous flies. Because dominance effects are not heritable, this suggests that the evolution of plasticity can be constrained when dominance effects are important as a mechanism for plasticity.  相似文献   

5.
Poelwijk FJ  de Vos MG  Tans SJ 《Cell》2011,146(3):462-470
Cellular regulation is believed to evolve in response to environmental variability. However, this has been difficult to test directly. Here, we show that a gene regulation system evolves to the optimal regulatory response when challenged with variable environments. We engineered a genetic module subject to regulation by the lac repressor (LacI) in E.?coli, whose expression is beneficial in one environmental condition and detrimental in another. Measured tradeoffs in fitness between environments predict the competition between regulatory phenotypes. We show that regulatory evolution in adverse environments is delayed at specific boundaries in the phenotype space of the regulatory LacI protein. Once this constraint is relieved by mutation, adaptation proceeds toward the optimum, yielding LacI with an altered allosteric mechanism that enables an opposite response to its regulatory ligand IPTG. Our results indicate that regulatory evolution can be understood in terms of tradeoff optimization theory.  相似文献   

6.
烤烟主要农艺性状的遗传与相关分析   总被引:8,自引:0,他引:8  
肖炳光  朱军  卢秀萍  白永富  李永平 《遗传》2006,28(3):317-323
利用包括基因型与环境互作的加性-显性遗传模型,对14个烤烟品种(系)及其配制的41个杂交组合在4个环境下的7个农艺性状表现进行遗传分析。结果表明,株高、节距、腰叶宽主要受加性效应控制,叶数、腰叶长受显性×环境互作效应影响最大,茎围以加性×环境互作效应、显性×环境互作效应为主,产量以加性效应、显性×环境互作效应为主。适应当地生态条件的品种(系)具有较高的正向加性效应。许多组合的显性主效应及在各试验点的显性×环境互作效应在方向上不尽一致,杂交组合的选配宜针对特定的生态环境进行。性状相关分析表明,大多数成对性状的各项相关系数为正值,且多以加性遗传相关为主,可利用株高对产量进行间接选择。
  相似文献   

7.
The variability in the genetic variance–covariance (G‐matrix) in plant resistance and its role in the evolution of invasive plants have been long overlooked. We conducted an additional analysis of the data of a reciprocal transplant experiment with tall goldenrod, Solidago altissima, in multiple garden sites within its native range (USA) and introduced range (Japan). We explored the differences in G‐matrix of resistance to two types of foliar herbivores: (a) a lace bug that is native to the USA and recently introduced to Japan, (b) and other herbivorous insects in response to plant origins and environments. A negative genetic covariance was found between plant resistances to lace bugs and other herbivorous insects, in all combinations of garden locations and plant origins except for US plants planted in US gardens. The G‐matrix of the resistance indices did not differ between US and Japanese plants either in US or Japanese gardens, while it differed between US and Japanese gardens in both US and Japanese plants. Our results suggested that the G‐matrix of the plant resistance may have changed in response to novel environmental differences including herbivore communities and/or other biotic and abiotic factors in the introduced range. This may have revealed a hidden trade‐off between resistances, masked by the environmental factors in the origin range. These results suggest that the stability of the genetic covariance during invasion, and the environmentally triggered variability in the G‐matrices of plant resistance may help to protect the plant against multiple herbivore species without changing its genetic architecture and that this may lead to a rapid adaptation of resistance in exotic plants. Local environments of the plant also have a critical effect on plant resistance and should be considered in order to understand trait evolution in exotic plants.  相似文献   

8.
Plants evolve defenses against herbivores and pathogens in stressful environments; however, plants that evolve tolerances to other environmental stressors may have compromised defenses. Such tradeoffs involving defenses may depend on limited resources or otherwise stressful environments; however, the effect of stressful environments on defense expression might be different for different genotypes (G×E). To test these predictions, we studied genetic variation and co‐variation of drought stress tolerance and defenses at two levels of genetic variation: between and within closely related species. We did this across an experimental drought stress gradient in a growth room for species for which genetic variation in drought tolerance was likely. In apparent contrast to predictions, the species Boechera holboellii (Brassicaceae) from lower and dryer elevations had slower inherent growth rates and correspondingly higher total defensive glucosinolate concentrations than the closely related species B. stricta from higher elevations. Thus, B. holboellii was both drought tolerant and defended; however, optimality theory does predict tradeoffs between defense and growth. Differences between species in the direct effect of water deficiency on glucosinolate production did not obscure the grow‐or‐defend tradeoff. B. holboellii may also have been more resistant to the specialist herbivore Plutella xylostella; a trend that was less clear because it depended on plant development and water deficient conditions. At finer scales of genetic variation, there was significant variation among families and naturally occurring inbred lines of B. stricta in drought tolerance measured as inherent growth, the reaction norm of growth across drought treatments, shoot water potential, and transpiration rates. Evidence for tradeoffs was also found within B. stricta in genetic correlations between resistance and transpiration rates, or glucosinolates and growth rates. No G×E was detected at these finer scales of genetic variation, although sometimes the tradeoff was dependent on drought conditions. Direct effects of drought stress resulted in an apparent plastic switch between resistance and tolerance to damage, which might be a cost avoidance mechanism because tradeoffs never involved tolerance to damage. Thus, when drought tolerance is manifest as slow inherent growth rates, plants may also have relatively high defense levels, especially in stressful environments. Otherwise, defenses may be compromised by drought‐coping mechanisms, although plastic switches to less costly defenses may alleviate constraints in stressful environments.  相似文献   

9.
Soybean seed and pod traits are important yield components. Selection for high yield style in seed and pod along with agronomic traits is a goal of many soybean breeders. The intention of this study was to identify quantitative trait loci (QTL) underlying seed and pod traits in soybean among eleven environments in China. 147 recombinant inbred lines were advanced through single-seed-descent method. The population was derived from a cross between Charleston (an American high yield soybean cultivar) and DongNong594 (a Chinese high yield soybean cultivar). A total of 157 polymorphic simple sequence repeat markers were used to construct a genetic linkage map. The phenotypic data of seed and pod traits [number of one-seed pod, number of two-seed pod, number of three-seed pod, number of four-seed pod, number of (two plus three)-seed pod, number of (three plus four)-seed pod, seed weight per plant, number of pod per plant] were recorded in eleven environments. In the analysis of single environment, fourteen main effect QTLs were identified. In the conjoint analysis of multiple environments, twenty-four additive QTLs were identified, and additive QTLs by environments interactions (AE) were evaluated and analyzed at the same time among eleven environments; twenty-three pairs of epistatic QTLs were identified, and epistasis (additive by additive) by environments interactions (AAE) were also analyzed and evaluated among eleven environments. Comparing the results of identification between single environment mapping and multiple environments conjoint mapping, three main effect QTLs with positive additive values and another three main effect QTLs with negative additive values, had no interactions with all environments, supported that these QTLs could be used in molecular assistant breeding in the future. These different effect QTLs could supply a good foundation to the gene clone and molecular asisstant breeding of soybean seed and pod traits.  相似文献   

10.
To understand rapid evolution in plant resistance to herbivory, it is critical to determine how the genetic correlation among resistances varies genetically and/or environmentally. We conducted a reciprocal transplant experiment of tall goldenrod, Solidago altissima with multiple replicates within the native range (USA) and the introduced range (Japan) to explore the differences in phenotypic traits of resistance to multiple herbivorous insects and their relationships between and within the countries. The Japanese plants were more resistant to the lace bug, Corythucha marmorata, which had recently invaded Japan, but were more susceptible to other herbivorous insects compared to the USA plants. An antagonistic relationship was found between plant resistances to lace bugs and other herbivorous insects in both USA and Japanese plants. In addition, this relationship was more obvious in gardens with a high level of foliage damage than in gardens with a low level of foliage damage by other herbivorous insects. An antagonistic relationship between resistances to aphids and lace bugs was also observed in USA gardens, but not in Japanese garden. These results suggest that the strength of constraints on the evolution of plant resistance due to genetic trade-offs may differ among biotic environments, including community structure of herbivorous insects. Therefore, differences in herbivorous insect communities between the native and introduced ranges can result in the rapid evolution of greater resistance in plants in the introduced range than in the native range.  相似文献   

11.
To determine if the evolution of fitness traits in the annual plant, Phlox drummondii, is constrained by lack of genetic variation, we calculated the heritability and genetic correlation of 16 traits in a field population. Full- and half-sib families of seeds were generated in the greenhouse and planted back into the study population. Of 855 seeds that germinated, 609 survived to produce fruit. For each plant we measured several aspects of plant size and three components of female fecundity: total number of fruits produced, number of seeds per fruit, and mass of individual seeds. Heritability of traits ranged from 0.00 to 0.15. Several traits showed significant levels of additive genetic variance, but we found no evidence of additive genetic variance in components of female fecundity and no evidence of negative genetic correlation between fitness traits. These results suggest that evolution in this population would be constrained by lack of heritable variation in fitness traits.  相似文献   

12.
Abstract.— Adaptive phenotypic plasticity in chemical defense is thought to play a major role in plant-herbivore interactions. We investigated genetic variation for inducibility of defensive traits in wild radish plants and asked if the evolution of induction is constrained by costs of phenotypic plasticity. In a greenhouse experiment using paternal half-sibling families, we show additive genetic variation for plasticity in glucosinolate concentration. Genetic variation for glucosinolates was not detected in undamaged plants, but was significant following herbivory by a specialist herbivore, Pieris rapae . On average, damaged plants had 55% higher concentrations of glucosinolates compared to controls. In addition, we found significant narrow-sense heritabilities for leaf size, trichome number, flowering phenology, and lifetime fruit production. In a second experiment, we found evidence of genetic variation in induced plant resistance to P. rapae . Although overall there was little evidence for genetic correlations between the defensive and life-history traits we measured, we show that more plastic families had lower fitness than less plastic families in the absence of herbivory (i.e., evidence for genetic costs of plasticity). Thus, there is genetic variation for induction of defense in wild radish, and the evolution of inducibility may be constrained by costs of plasticity.  相似文献   

13.
Although the impacts of climate change and invasive species are typically studied in isolation, they likely interact to reduce the viability of plant and animal populations. Indeed, invasive species, by definition, have succeeded in areas outside of their native range and may therefore have higher adaptive capacity relative to native species. Nevertheless, the genetic architecture of the thermal niche, which sets a limit to the potential for populations to evolve rapidly under climate change, has never been measured in an invasive species in its introduced range. Here, we estimate the genetic architecture of thermal performance in the harlequin beetle (Harmonia axyridis), a Central Asian species that has invaded four continents. We measured thermal performance curves in more than 400 third-generation offspring from a paternal half-sib breeding experiment and analyzed the genetic variance–covariance matrix. We show that while the critical thermal limits in this species have an additive genetic basis, most components of the thermal performance curve have low heritability. Moreover, we found evidence that genetic correlations may constrain the evolution of beetles under climate change. Our results suggest that some invasive species may have limited evolutionary capacity under climate change, despite their initial success in colonizing novel environments.  相似文献   

14.
An experimental study determined that females of the herbivorous fly species Liriomyza sativae (Diptera: Agromyzidae) preferentially oviposit on the plant species on which their female progeny attain the greatest pupal weight. A modified parent/offspring regression was used to quantify this relationship as an additive genetic covariance between host-plant preference and relative performance of female larvae on different plant species. The implications of a genetic covariance between preference and performance on the course of evolution in herbivores are discussed. Several females from one population refused to oviposit on one of the plant species; this population also suffered the only significant larval mortality on this plant. These results corroborate the avoidance of unsuitable host plants seen in the genetic analyses of individuals, but relative to the genetic data, such population-level data are of limited usefulness in the study of evolutionary mechanisms by which insect populations become adapted to their host plants.  相似文献   

15.
A growing body of evidence indicates that phenotypic selection on juvenile traits of both plants and animals may be considerable. Because juvenile traits are typically subject to maternal effects and often have low heritabilities, adaptive responses to natural selection on these traits may seem unlikely. To determine the potential for evolutionary response to selection on juvenile traits of Nemophila menziesii (Hydrophyllaceae), we conducted two quantitative genetic studies. A reciprocal factorial cross, involving 16 parents and 1960 progeny, demonstrated a significant maternal component of variance in seed mass and additive genetic component of variance in germination time. This experiment also suggested that interaction between parents, though small, provides highly significant contributions to the variance of both traits. Such a parental interaction could arise by diverse mechanisms, including dependence of nuclear gene expression on cytoplasmic genotype, but the design of this experiment could not distinguish this from other possible causes, such as effects on progeny phenotype of interaction between the environmental conditions of both parents. The second experiment, spanning three generations with over 11,000 observations, was designed for investigation of the additive genetic variance in maternal effect, assessment of paternal effects, as well as further partitioning of the parental interaction identified in the reciprocal factorial experiment. It yielded no consistent evidence of paternal effects on seed mass, nor of parental interactions. Our inference of such interaction effects from the first experiment was evidently an artifact of failing to account for the substantial variance among fruits within crosses. The maternal effect was found to have a large additive genetic component, accounting for at least 20% of the variation in individual seed mass. This result suggests that there is appreciable potential for response to selection on seed mass through evolution of the maternal effect. We discuss aspects that may nevertheless limit response to individual selection on seed mass, including trade-offs between the size of individual seeds and germination time and between the number of seeds a maternal plant can mature and their mean size.  相似文献   

16.
17.
BACKGROUND AND AIMS: Dynamic management (DM) of genetic resources aims at maintaining genetic variability between different populations evolving under natural selection in contrasting environments. In 1984, this strategy was applied in a pilot experiment on wheat (Triticum aestivum). Spatio-temporal evolution of earliness and its components (partial vernalization sensitivity, daylength sensitivity and earliness per se that determines flowering time independently of environmental stimuli) was investigated in this multisite and long-term experiment. METHODS: Heading time of six populations from the tenth generation was evaluated under different vernalization and photoperiodic conditions. KEY RESULTS: Although temporal evolution during ten generations was not significant, populations of generation 10 were genetically differentiated according to a north-south latitudinal trend for two components out of three: partial vernalization sensitivity and narrow-sense earliness. CONCLUSIONS: It is concluded that local climatic conditions greatly influenced the evolution of population earliness, thus being a major factor of differentiation in the DM system. Accordingly, a substantial proportion (approximately 25 %) of genetic variance was distributed among populations, suggesting that diversity was on average conserved during evolution but was differently distributed by natural selection (and possibly drift). Earliness is a complex trait and each genetic factor is controlled by multiple homeoalleles; the next step will be to look for spatial divergence in allele frequencies.  相似文献   

18.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

19.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

20.
Environmental variation in temperature can have dramatic effects on plant morphology, phenology, and fitness, and for this reason it is important to understand the evolutionary dynamics of phenotypic plasticity in response to temperature. We investigated constraints on the evolution of phenotypic plasticity in response to a temperature gradient in the model plant Arabidopsis thaliana by applying modern analytical tools to the classic data of Westerman & Lawrence (1970). We found significant evidence for two types of constraints. First, we detected numerous significant genetic correlations between plastic responses to temperature and the mean value of a trait across all environments, which differed qualitatively in pattern between the set of ecotypes and the set of mutant lines in the original sample. Secondly, we detected significant costs of flowering time plasticity in two of the three experimental environments, and a net pattern of selection against flowering time plasticity in the experiment overall. Thus, when explored with contemporary methods, the prescient work of Westerman & Lawrence (1970) provides new insights about evolutionary constraints on the evolution of plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号