首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The respiratory activity of marine bacteria is an important indication of the ecological functioning of these organisms in marine ecosystems. The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) is reduced intracellularly in respiring cells to an insoluble, fluorescent precipitate. This product is detectable and quantifiable by flow cytometry in individual cells. We describe here an evaluation of flow cytometry for measuring CTC activity in natural assemblages of marine bacteria growing in dilution cultures. We found that more CTC-positive cells are detected by flow cytometry than by visual epifluorescence microscopy. Samples can be stored refrigerated or frozen in liquid nitrogen for at least 4 weeks without a significant loss of total cells, CTC-positive cells, or CTC fluorescence. Cytometry still may not detect all active cells, however, since the dimmest fluorescing cells are not clearly separated from background noise. Reduction of CTC is very fast in most active cells, and the number of active cells reaches 80% of the maximum number within 2 to 10 min. The proportion of active cells is correlated with the growth rate, while the amount of fluorescence per cell varies inversely with the growth rate. The CTC reduction kinetics in assemblages bubbled with nitrogen and in assemblages bubbled with air to vary the oxygen availability were the same, suggesting that CTC can effectively compete with oxygen for reducing power. A nonbubbled control, however, contained more CTC-positive cells, and the amount of fluorescence per cell was greater. Activity may have been reduced by bubble-induced turbulence. Addition of an artificial reducing agent, sodium dithionite, after CTC incubation and fixation resulted in a greater number of positive cells but did not "activate" a majority of the cells. This indicated that some of the negative cells actually transported CTC across their cell membranes but did not reduce it to a detectable level. Automated analysis by flow cytometry allows workers to study single-cell variability in marine bacterioplankton activity and changes in activity on a small temporal or spatial scale.  相似文献   

2.
The respiratory activity of marine bacteria is an important indication of the ecological functioning of these organisms in marine ecosystems. The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) is reduced intracellularly in respiring cells to an insoluble, fluorescent precipitate. This product is detectable and quantifiable by flow cytometry in individual cells. We describe here an evaluation of flow cytometry for measuring CTC activity in natural assemblages of marine bacteria growing in dilution cultures. We found that more CTC-positive cells are detected by flow cytometry than by visual epifluorescence microscopy. Samples can be stored refrigerated or frozen in liquid nitrogen for at least 4 weeks without a significant loss of total cells, CTC-positive cells, or CTC fluorescence. Cytometry still may not detect all active cells, however, since the dimmest fluorescing cells are not clearly separated from background noise. Reduction of CTC is very fast in most active cells, and the number of active cells reaches 80% of the maximum number within 2 to 10 min. The proportion of active cells is correlated with the growth rate, while the amount of fluorescence per cell varies inversely with the growth rate. The CTC reduction kinetics in assemblages bubbled with nitrogen and in assemblages bubbled with air to vary the oxygen availability were the same, suggesting that CTC can effectively compete with oxygen for reducing power. A nonbubbled control, however, contained more CTC-positive cells, and the amount of fluorescence per cell was greater. Activity may have been reduced by bubble-induced turbulence. Addition of an artificial reducing agent, sodium dithionite, after CTC incubation and fixation resulted in a greater number of positive cells but did not “activate” a majority of the cells. This indicated that some of the negative cells actually transported CTC across their cell membranes but did not reduce it to a detectable level. Automated analysis by flow cytometry allows workers to study single-cell variability in marine bacterioplankton activity and changes in activity on a small temporal or spatial scale.  相似文献   

3.
Bacteria are the most abundant and active organisms in marine sediments and are critical for nutrient cycling and as a food source to many benthic and pelagic organisms. Bacteria are found both as free-living cells and as particle-associated cells, which can make investigations of these communities difficult. We found that common procedures for extracting bacteria from sediments leave the bacteria clay particle-associated and the clay particles clump, which reduce the reproducibility of direct counts. We optimized a sonication/surfactant method that produces a homogeneous suspension of bacterial cells against a uniform background of clay particles, which results in reproducible samples for epifluorescence microscopy. We developed a method to estimate CTC-positive cells and cell-specific CTC content in intact cores of surficial sediment communities from riverine, estuarine and coastal sites. Benthic bacterial abundances averaged 4.9x10(8) cells/g dry wt sediments in Apalachicola River, Florida sediments, 4.9-13.8x10(9) cells/g dry wt sediments in a variety of Apalachicola Bay sediments and 3.6x10(8) cells/g dry weight in shallow, anoxic Gulf of Mexico sediments. Percent CTC-positive cells ranged from low values of 9-10% CTC-positive cells in Apalachicola River and Apalachicola Bay sediments to high values of 25% CTC-positive cells in anoxic Gulf of Mexico sediments. After correction for abiotic CTC reduction and chlorophyll interference, estimates of cell-specific CTC reduction ranged from 0.15 to 0.55 fmol CTC(red)/active cell in the Apalachicola Bay sediments to 1.6 to 3.8 fmol CTC(red)/active cell in anoxic Gulf of Mexico sediments.  相似文献   

4.
The bacterial population in barley field soil was estimated by determining the numbers of (i) cells reducing the artificial electron acceptor 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) to CTC-formazan (respiratory activity), (ii) cells dividing a limited number of times (microcolony formation) on nutrient-poor media, (iii) cells dividing many times (colony formation) on nutrient-poor agar media, and (iv) cells stained with acridine orange (total counts). The CTC reduction assay was used for the first time for populations of indigenous soil bacteria and was further developed for use in this environment. The number of viable cells was highest when estimated by the number of microcolonies developing during 2 months of incubation on filters placed on the surface of nutrient-poor media. The number of bacteria reducing CTC to formazan was slightly lower than the number of bacteria forming microcolonies. Traditional plate counts of CFU (culturable cells) yielded the lowest estimate of viable cell numbers. The microcolony assay gave an estimate of both (i) cells forming true microcolonies (in which growth ceases after a few cell divisions) representing viable but nonculturable cells and (ii) cells forming larger microcolonies (in which growth continues) representing viable, culturable cells. The microcolony assay, allowing single-cell observations, thus seemed to be best suited for estimation of viable cell numbers in soil. The effect on viable and culturable cell numbers of a temperature increase from 4 to 17°C for 5 days was investigated in combination with drying or wetting of the soil. Drying or wetting prior to the temperature increase, rather than the temperature increase per se, affected both the viable and culturable numbers of bacteria; both numbers were reduced in predried soil, while they increased slightly in the prewetted soil.  相似文献   

5.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

6.
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.  相似文献   

7.
The use of the redox dye 5-cyano-2,3,-ditolyl tetrazolium chloride (CTC) for evaluating the metabolic activity of aerobic bacteria has gained wide application in recent years. In this study, we examined the utility of CTC in capturing the metabolic activity of anaerobic bacteria. In addition, the factors contributing to abiotic reduction of CTC were also examined. CTC was used in conjunction with the fluorochrome 5-(4,6-dichlorotriazinyl) aminofluorescein (DTAF), that targets bacterial cell wall proteins, to quantitate the active fraction of total bacterial numbers. Facultative anaerobic bacteria, including Escherichia coli grown fermentatively, and Pseudomonas chlorophis, P. fluorescens, P. stutzeri, and P. pseudoalcalegenes subsp. pseudoalcalegenes grown under nitrate-reducing conditions, actively reduced CTC during all phases of growth. Greater than 95% of these cells accumulated intracellular CTC-formazan crystals during the exponential phase. Obligate anaerobic bacteria, including Syntrophus aciditrophicus grown fermentatively, Geobacter sulfurreducens grown with fumarate as the electron acceptor, Desulfovibrio desulfuricans subsp. desulfuricans and D. halophilus grown under sulfate-reducing conditions, Methanobacterium formicicum grown on formate, H2 and CO2, and Methanobacterium thermoautotrophicum grown autotrophically on H2 and CO2 all reduced CTC to intracellular CTC-formazan crystals. The optimal CTC concentration for all organisms examined was 5 mM. Anaerobic CTC incubations were not required for quantification of anaerobically grown cells. CTC-formazan production by all cultures examined was proportional to biomass production, and CTC reduction was observed even in the absence of added nutrients. CTC was reduced by culture fluids containing ferric citrate as electron acceptor following growth of either G. metallireducens or G. sulfurreducens. Abiotic reduction of CTC was observed in the presence of ascorbic acid, cysteine hydrochloride, dithiothreitol, NADH, NADPH, Fe(II)Cl2, sodium thioglycolic acid and sodium sulfide. These results suggest that while CTC can be used to capture the metabolic activity of anaerobic bacteria, care must be taken to avoid abiotic reduction of CTC.  相似文献   

8.
9.
Simple, rapid methods for the detection and enumeration of specific bacteria in water and wastewater are needed. We have combined incubation using cyanoditolyl tetrazolium chloride (CTC) to detect respiratory activity with a modified fluorescent-antibody (FA) technique, for the enumeration of specific viable bacteria. Bacteria in suspensions were captured by filtration on nonfluorescent polycarbonate membranes that were then incubated on absorbent pads saturated with CTC medium. A specific antibody conjugated with fluorescein isothiocyanate was reacted with the cells on the membrane filter. The membrane filters were mounted for examination by epifluorescence microscopy with optical filters designed to permit concurrent visualization of fluorescent red-orange CTC-formazan crystals in respiring cells which were also stained with the specific FA. Experiments with Escherichia coli O157:H7 indicated that both respiratory activity and specific FA staining could be detected in logarithmic- or stationary-phase cultures, as well as in cells suspended in M9 medium or reverse-osmosis water. Following incubation without added nutrients in M9 medium or unsterile reverse-osmosis water, the E. coli O157:H7 populations increased, although lower proportions of the organisms reduced CTC. Numbers of CTC-positive, FA-positive cells compared with R2A agar plate counts gave a strong linear regression (R = 0.997). Differences in injury did not appear to affect CTC reduction. The procedure, which can be completed within 3 to 4 h, has also been performed successfully with Salmonella typhimurium and Klebsiella pneumoniae.  相似文献   

10.
The 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining method is commonly and increasingly used to detect and to enumerate actively respiring cells (CTC+ cells) in aquatic systems. However, this method remains controversial since some authors promote this technique while others pointed out several drawbacks of the method. Using flow cytometry (FCM), we showed that CTC staining kinetics vary greatly from one sample to another. Therefore, there is no universal staining protocol that can be applied to aquatic bacterial communities. Furthermore, using (3)H-leucine incorporation, it was shown that the CTC dye has a rapid toxic effect on bacterial cells by inhibiting protein synthesis, a key physiological function. The coupling of radioactive labelling with cell sorting by FCM suggested that CTC+ cells contribute to less than 60% of the whole bacterial activity determined at the community level. From these results, it is clearly demonstrated that the CTC method is not valid to detect active bacteria, i.e. cells responsible for bacterial production.  相似文献   

11.
The viability of bacteria in milk after heat treatments was assessed by using three different viability indicators: (i) CFU on plate count agar, (ii) de novo expression of a gfp reporter gene, and (iii) membrane integrity based on propidium iodide exclusion. In commercially available pasteurized milk, direct viable counts, based on dye exclusion, were significantly (P < 0.05) higher than viable cell counts determined from CFU, suggesting that a significant subpopulation of cells in pasteurized milk are viable but nonculturable. Heating milk at 63.5 degrees C for 30 min resulted in a >4-log-unit reduction in the number of CFU of Escherichia coli and Pseudomonas putida that were marked with lac-inducible gfp. However, the reduction in the number of gfp-expressing cells of both organisms under the same conditions was <2.5 log units. These results demonstrate that a substantial portion of cells rendered incapable of forming colonies by heat treatment are metabolically active and are able to transcribe and translate genes de novo.  相似文献   

12.
Direct microscopic quantification of respiring (i.e., viable) bacteria was performed for drinking water samples and biofilms grown on different opaque substrata. Water samples or biofilms developed in flowing drinking water were incubated with the vital redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and R2A medium. One hour of incubation with 0.5 mM CTC was sufficient to obtain intracellular reduction of CTC to the insoluble fluorescent formazan (CTF) product, which was indicative of cellular respiratory (i.e., electron transport) activity. This result was obtained with both planktonic and biofilm-associated cells. Planktonic bacteria were captured on 0.2-microns-pore-size polycarbonate membrane filters and examined by epifluorescence microscopy. Respiring cells containing CTF deposits were readily detected and quantified as red-fluorescing objects on a dark background. The number of CTC-reducing bacteria was consistently greater than the number of aerobic CFU determined on R2A medium. Approximately 1 to 10% of the total planktonic population (determined by counterstaining with 4,6-diamidino-2-phenylindole) were respirometrically active. The proportion of respiring bacteria in biofilms composed of drinking water microflora was greater, ranging from about 5 to 35%, depending on the substratum. Respiring cells were distributed more or less evenly in biofilms, as demonstrated by counterstaining with 4,6-diamidino-2-phenylindole. The amount of CTF deposited in single cells of Pseudomonas putida that formed monospecies biofilms was quantified by digital image analysis and used to indicate cumulative respiratory activity. These data indicated significant cell-to-cell variation in respiratory activity and reduced electron transport following a brief period of nutrient starvation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Deficiencies in traditional bacterial enumeration techniques which rely on colony formation have led to the use of total direct counting methods, such as the acridine orange direct count technique for the enumeration of planktonic bacteria. As total direct counts provide no information on the viability or activity of the organisms, demonstration of respiratory activity with the fluorochrome cyanoditolyl tetrazolium chloride (CTC) has been employed. We have modified this technique by performing filtration prior to CTC incubation. Cells captured on a polycarbonate membrane were incubated on absorbent pads saturated with medium containing CTC. Following counterstaining with DAPI (4(prm1),6-diamidino-2-phenylindole) total and respiring cells were enumerated by epifluorescence microscopy. Factors affecting CTC reduction by Klebsiella pneumoniae, Salmonella typhimurium, and Escherichia coli K-12 were investigated. With K. pneumoniae, nutrient additions to the CTC medium did not increase the number of respiring cells detected. CTC reduction by all three organisms decreased in response to an increase of the pH of the CTC medium above pH 6.5. Increasing phosphate concentrations contributed to this inhibitory effect. CTC-membrane filter counts of K. pneumoniae, S. typhimurium, and E. coli K-12 and of bacteria in well water corresponded closely with plate counts (r = 0.987). The results show that careful attention should be given to the composition of CTC-containing media which are used to enumerate respiring bacteria. With an appropriate medium, reliable enumeration of respiring bacteria can be achieved within a few hours.  相似文献   

14.
Fecal bacteria from 33 infants (aged 1 to 6 months) were tested for growth on commercial prebiotics. The children were born vaginally (20) or by caesarean section (13). Bifidobacteria, lactobacilli, gram-negative bacteria, Escherichia coli, and total anaerobes in fecal samples were enumerated by selective agars and fluorescence in situ hybridization. The total fecal bacteria were inoculated into cultivation media containing 2 % Vivinal® (galactooligosaccharides—GOS) or Raftilose® P95 (fructooligosaccharides—FOS) as a single carbon source and bacteria were enumerated again after 24 h of anaerobic cultivation. Bifidobacteria dominated, reaching counts of 9–10 log colony-forming units (CFU)/g in 17 children born vaginally and in seven children delivered by caesarean section. In these infants, lactobacilli were more frequently detected and a lower number of E. coli and gram-negative bacteria were determined compared to bifidobacteria-negative infants. Clostridia dominated in children without bifidobacteria, reaching counts from 7 to 9 log CFU/g. Both prebiotics supported all groups of bacteria tested. In children with naturally high counts of bifidobacteria, bifidobacteria dominated also after cultivation on prebiotics, reaching counts from 8.23 to 8.77 log CFU/mL. In bifidobacteria-negative samples, clostridia were supported by prebiotics, reaching counts from 7.17 to 7.69 log CFU/mL. There were no significant differences between bacterial growth on Vivinal® and Raftilose® P95 and counts determined by cultivation and FISH. Prebiotics should selectively stimulate the growth of desirable bacteria such as bifidobacteria and lactobacilli. However, our results showed that commercially available FOS and GOS may stimulate also other fecal bacteria.  相似文献   

15.
Abstract In natural bacterioplankton assemblages, only a fraction of the total cell count is active, and, therefore, rates of bacterial production should be more strongly correlated to the number of active cells than to the total number of bacteria. However, this hypothesis has seldom been tested. Herein we explore the relationship between rates of bacterial production (measured as leucine uptake) and the number of active bacteria in 14 lakes in southern Québec. Active bacteria are defined as those cells capable of reducing the tetrazolium salt CTC to its fluorescent formazan; these cells were enumerated using flow cytometry. Bacterial production varied two orders of magnitude in the lakes studied, as did the number of active bacteria, whereas the total number of bacteria varied by only sixfold. The number and proportion of active bacteria were similar among lake strata, but rates of bacterial production were highest in the epilimnion and lowest in the hypolimnion. As expected, bacterial production was better correlated to the number of active cells, and bacterial growth rates calculated for active cells ranged from 0.7 to 1.8 day−1, on average threefold higher than those calculated on the basis of total bacterial abundance. Growth rates scaled to active cells were, on average, similar among lake strata and did not show any pattern along a gradient of increasing chlorophyll concentration, so there was no systematic change of bacterial growth rates with lake productivity. In contrast, growth rates scaled to the entire bacterial assemblage were positively correlated to chlorophyll, were tenfold more variable among lakes than growth rates of active cells, and showed larger differences among lake strata. Scaling bacterial production to either the total number or the number of active cells thus results in very different patterns in bacterial growth rates among aquatic systems. Received: 12 July 1996; Accepted: 24 September 1996  相似文献   

16.
Rapid, direct methods are needed to assess active bacterial populations in water and foods. Our objective was to determine the efficiency of bacterial detection by immunomagnetic separation (IMS) and the compatibility of IMS with cyanoditolyl tetrazolium chloride (CTC) incubation to determine respiratory activity, using the pathogen Escherichia coli O157:H7. Counterstaining with a specific fluorescein-conjugated anti-O157 antibody (FAb) following CTC incubation was used to allow confirmation and visualization of bacteria by epifluorescence microscopy. Broth-grown E. coli O157:H7 was used to inoculate fresh ground beef (<17% fat), sterile 0.1% peptone, or water. Inoculated meat was diluted and homogenized in a stomacher and then incubated with paramagnetic beads coated with anti-O157 specific antibody. After IMS, cells with magnetic beads attached were stained with CTC and then an anti-O157 antibody-fluorescein isothiocyanate conjugate and filtered for microscopic enumeration or solid-phase laser cytometry. Enumeration by laser scanning permitted detection of ca. 10 CFU/g of ground beef or <10 CFU/ml of liquid sample. With inoculated meat, the regression results for log-transformed respiring FAb-positive counts of cells recovered on beads versus sorbitol-negative plate counts in the inoculum were as follows: intercept = 1.06, slope = 0.89, and r2 = 0. 95 (n = 13). The corresponding results for inoculated peptone were as follows: intercept = 0.67, slope = 0.88, and r2 = 0.98 (n = 24). Recovery of target bacteria on beads by the IMS-CTC-FAb method, compared with recovery by sorbitol MacConkey agar plating, yielded greater numbers (beef, 6.0 times; peptone, 3.0 times; water, 2.4 times). Thus, within 5 to 7 h, the IMS-CTC-FAb method detected greater numbers of E. coli O157 cells than were detected by plating. The results show that the IMS-CTC-FAb technique with enumeration by either fluorescence microscopy or solid-phase laser scanning cytometry gave results that compared favorably with plating following IMS.  相似文献   

17.
The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples.  相似文献   

18.
The redox dye 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was employed for direct epifluorescent microscopic enumeration of respiring bacteria in environmental samples. Oxidized CTC is nearly colorless and is nonfluorescent; however, the compound is readily reduced via electron transport activity to fluorescent, insoluble CTC-formazan, which accumulates intracellularly. Bacteria containing CTC-formazan were visualized by epifluorescence microscopy in wet-mount preparations, on polycarbonate membrane filter surfaces, or in biofilms associated with optically opaque surfaces. Counterstaining of CTC-treated samples with the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole allowed enumeration of active and total bacterial subpopulations within the same preparation. Municipal wastewater, groundwater, and seawater samples supplied with exogenous nutrients yielded CTC counts that were generally lower than total 4',6-diamidino-2-phenylindole counts but typically equal to or greater than standard heterotrophic (aerobic) plate counts. In unsupplemented water samples, CTC counts were typically lower than those obtained with the heterotrophic plate count method. Reduction of CTC by planktonic or biofilm-associated bacteria was suppressed by formaldehyde, presumably because of inhibition of electron transport activity and other metabolic processes. Because of their bright red fluorescence (emission maximum, 602 nm), actively respiring bacteria were readily distinguishable from abiotic particles and other background substances, which typically fluoresced at shorter wavelengths. The use of CTC greatly facilitated microscopic detection and enumeration of metabolically active (i.e., respiring) bacteria in environmental samples.  相似文献   

19.
The temporal variation in the abundance and proportion of highlyrespiration-active bacteria in the eutrophic lakes Esrum andFrederiksborg Slotssø was determined with the redox dye5-cyano-2,3-ditolyl tetrazolium chloride (CTC). In addition,a comparative late summer study was undertaken across a gradientof nutrient enrichment in Danish lakes. The purpose was to investigatethe importance of substrate (chlorophyll) and temperature forthe control of CTC-active cells (CTC+). The abundance of CTC+cells was much lower and more variable than the total numberof cells counted after 4',6-diamidino-2-phenylindole (DAPI)staining. The proportion of CTC+ cells in Lake Esrum and FrederiksborgSlotssø was normally <5%, and between 2.5 and 20%in 14 other lakes. The abundance as well as the proportion ofCTC+ cells increased with chlorophyll in Lake Esrum and FrederiksborgSlotssø, and chlorophyll explained 43% of the variabilityin CTC+ abundance. In the comparative study, the abundance ofCTC+ cells increased along the chlorophyll gradient, which explained49% of the variability. The results showed that the abundanceand, to a lesser degree, the proportion of CTC+ bacteria werecontrolled by substrate supply. One consequence of the low abundanceof active bacteria is that in situ growth rates scaled to CTC+cells are 3- to 7-fold higher than those scaled to DAPI counts.It is suggested that studies on factors controlling bacterioplanktonactivity at the single-cell level should be investigated scaledto active cells.  相似文献   

20.
The viability of bacteria in milk after heat treatments was assessed by using three different viability indicators: (i) CFU on plate count agar, (ii) de novo expression of a gfp reporter gene, and (iii) membrane integrity based on propidium iodide exclusion. In commercially available pasteurized milk, direct viable counts, based on dye exclusion, were significantly (P < 0.05) higher than viable cell counts determined from CFU, suggesting that a significant subpopulation of cells in pasteurized milk are viable but nonculturable. Heating milk at 63.5°C for 30 min resulted in a >4-log-unit reduction in the number of CFU of Escherichia coli and Pseudomonas putida that were marked with lac-inducible gfp. However, the reduction in the number of gfp-expressing cells of both organisms under the same conditions was <2.5 log units. These results demonstrate that a substantial portion of cells rendered incapable of forming colonies by heat treatment are metabolically active and are able to transcribe and translate genes de novo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号