首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative DNA modification has been implicated in development of certain cancers and 8-oxodG, the most abundant and mutagenic DNA modification, has for some time been considered a biomarker of this activity. Urinary excretion of 8-oxodG over 24h has been used to estimate the rate of damage to DNA, and animal studies have supported this rationale. Reported determinants include tobacco smoking, heavy exercise, environmental pollution and individual oxygen consumption. Samples from three published studies were used to determine the association of urinary 8-oxodG excretion with age, plasma antioxidants, the glutathione-S-transferase phenotype and the activity of the xenobiotic metabolising enzyme CYP1A2. In the age range 35-65 years, age was not related to urinary 8-oxodG excretion, and there were no relations to either the glutathione-S-transferase phenotype or to the plasma antioxidants: vitamin C, alpha-tocopherol, beta-carotene, lycopene or coenzyme Q10. The activity of CYP1A2 showed a significant correlation in two of the three studies, as well as a significant correlation of 0.26 (p < 0.05) in the pooled data set. Regression analysis of CYP1A2 activity on 8-oxodG indicated that 33% increase in CYP1A2 activity would correspond to a doubling of 8-oxodG excretion. This finding needs to be confirmed in independent experiments. Spot morning urine samples can under certain circumstances be used to estimate 8-oxodG excretion rate provided that creatinine excretion is unchanged (in paired experiments) or comparable (in un-paired experiments), as evaluated from the correlation between 8-oxodG excretion in 24 h urine samples and in morning spot urine samples corrected for creatinine excretion (r = 0.50, p < 0.05). We conclude that 8-oxodG excretion is determined by factors like oxygen consumption and CYP1A2 activity rather than by factors like plasma antioxidant concentrations.  相似文献   

2.
Experimental study of oxidative DNA damage   总被引:7,自引:0,他引:7  
Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical compounds have been studied in animal experiments mainly in rats and mice, and generally with measurement of 8-oxodG with HPLC-EC. A large number of well-known carcinogens induce 8-oxodG formation in liver and/or kidneys. Moreover several animal studies have shown a close relationship between induction of dative DNA damage and tumour formation.

In principle the level of oxidative DNA damage in an organ or cell may be studied by measurement of modified bases in extracted DNA by immunohistochemical visualisation, and from assays of strand breakage before and after treatment with repair enzymes. However, this level is a balance between the rates of damage and repair. Until the repair rates and capacity can be adequately assessed the rate of damage can only be estimated from the urinary excretion of repair products albeit only as an average of the entire body.

A number of model compounds have been used to induce oxidative DNA damage in experimental animals. The hepatocarcinogen 2-nitropropane induces up to 10-fold increases in 8-oxodG levels in rat liver DNA. The level of 8-oxodG is also increased in kidneys and bone marrow but not in the testis. By means of 2-nitropropane we have shown correspondence between the increases in 8-oxodG in target organs and the urinary excretion of 8-oxodG and between 8-oxodG formation and the comet assay in bone marrow as well potent preventive effects of extracts of Brussels sprouts. Others have shown similar effects of green tea extracts and its components. Drawbacks of the use of 2-nitropropane as a model for oxidative DNA damage relate particularly to formation of 8-aminoguanine derivatives that may interfere with HPLC-EC assays and have unknown consequences. Other model compounds for induction of oxidative DNA damage, such as ferric nitriloacetate, iron dextran, potassium bromate and paraquat, are less potent and/or more organ specific.

Inflammation and activation of an inflammatory response by phorbol esters or E. coli lipopolysaccharide (LPS) induce oxidative DNA damage in many target cells and enhance benzene-induced DNA damage in mouse bone marrow.

Experimental studies provide powerful tools to investigate agents inducing and preventing oxidative damage to DNA and its role in carcinogenesis. So far, most animal experiments have concerned 8-oxodG and determination of additional damaged bases should be employed. An ideal animal model for prevention of oxidative DNA damage has yet to he developed.  相似文献   

3.
We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.  相似文献   

4.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

5.
Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.  相似文献   

6.
Abnormal spermatozoa frequently display typical features of oxidative stress, i.e. excessive level of reactive oxygen species (ROS) and depleted antioxidant capacity. Moreover, it has been found that a high level of oxidatively damaged DNA is associated with abnormal spermatozoa and male infertility. Therefore, the aim of our study was the comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. The broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair were analyzed in the blood plasma and seminal plasma of groups of fertile and infertile subjects. These parameters include: (i) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) levels in urine; (ii) 8-oxodG level in DNA isolated from leukocytes and spermatozoa; (iii) antioxidant vitamins (A, C and E) and uric acid. Urinary excretion of 8-oxodG and 8-oxoGua and the level of oxidatively damaged DNA in leukocytes as well as the level of antioxidant vitamins were analyzed using HPLC and HPLC/GC/MS methods.The results of our study demonstrate that 8-oxodG level significantly correlated with every parameter which describe sperm quality: sperm count, motility and morphology. Moreover, the data indicate a higher level of 8-oxodG in sperm DNA compared with DNA of surrogate tissue (leukocytes) in infertile men as well as in healthy control group. For the whole study population the median values of 8-oxodG/106 dG were respectively 7.85 and 5.87 (p = 0.000000002). Since 8-oxodG level in sperm DNA is inversely correlated with urinary excretion rate of 8-oxoGua, which is the product of OGG1 activity, we hypothesize that integrity of spermatozoa DNA may be highly dependent on OGG1 activity. No relationship between the whole body oxidative stress and that of sperm plasma was found, which suggests that the redox status of semen may be rather independent on this characteristic for other tissues.  相似文献   

7.
Oxidative damage to cellular biomolecules, in particular DNA, has been proposed to play an important role in a number of patholgical conditions, including carcinogenesis. A much studied consequence of oxygen-centred radical damage to DNA is 8-oxo-2'-deoxyguanosine (8-oxodG). Using numerous techniques, this lesion has been quantified in various biological matrices, most notably DNA and urine. Until recently, it was understood that urinary 8-oxodG derives solely from DNA repair, although the processes which may yield the modified deoxynucleoside have never been thoroughly discussed. This review suggests that nucleotide excision repair and the action of a specific endonuclease may, in addition to the nucleotide pool, contribute significantly to levels of 8-oxodG in the urine. On this basis, urinary 8-oxodG represents an important biomarker of generalised, cellular oxidative stress. Current data from antioxidant supplementation trials are examined and the potential for such compounds to modulate DNA repair is considered. It is stressed that further work is required to link DNA, serum and urinary levels of 8-oxodG such that the kinetics of formation and clearance may be elucidated, facilitating greater understanding of the role played by oxidative stress in disease.  相似文献   

8.
Linking exposure to environmental pollutants with biological effects   总被引:8,自引:0,他引:8  
Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene, metabolism and inflammation. By means of personal monitoring and biomarkers of internal dose, biologically effective dose and susceptibility, it should be possible to characterize individual exposure and identify air pollution sources with relevant biological effects. In a series of studies, individual exposure to PM(2.5), nitrogen dioxide (NO(2)) and benzene has been measured in groups of 40-50 subjects. Measured biomarkers included 1-hydroxypyrene, benzene metabolites (phenylmercapturic acid (PMA) and trans-trans-muconic acid (ttMA)), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine, DNA strand breaks, base oxidation, 8-oxodG and PAH bulky adducts in lymphocytes, markers of oxidative stress in plasma and genotypes of glutathione transferases (GSTs) and NADPH:quinone reductase (NQO1). With respect to benzene, the main result indicates that DNA base oxidation is correlated with PMA excretion. With respect to exposure to PM, biomarkers of oxidative damage showed significant positive association with the individual exposure. Thus, 8-oxodG in lymphocyte DNA and markers of oxidative damage to lipids and protein in plasma associated with PM(2.5) exposure. Several types of DNA damage showed seasonal variation. PAH adduct levels, DNA strand breaks and 8-oxodG in lymphocytes increased significantly in the summer period, requiring control of confounders. Similar seasonal effects on strand breaks and expression of the relevant DNA repair genes ERCC1 and OGG1 have been reported.In the present setting, biological effects of air pollutants appear mainly related to oxidative stress via personal exposure and not to urban background levels. Future developments include personal time-resolved monitors for exposure to ultrafine PM and PM(2.5,) use of GPS, as well as genomics and proteomics based biomarkers.  相似文献   

9.
Reactive oxygen species threaten genomic integrity by inducing oxidative DNA damage. One common form of oxidative DNA damage is the mutagenic lesion 8-oxoguanine (8-oxodG). One driver of oxidative stress that can induce 8-oxodG is inflammation, which can be initiated by the cytokine tumor necrosis factor alpha (TNF-α). Oxidative DNA damage is primarily repaired by the base excision repair pathway, initiated by glycosylases targeting specific DNA lesions. 8-oxodG is excised by 8-oxoguanine glycosylase 1 (OGG1). A common Ogg1 allelic variant is S326C-Ogg1, prevalent in Asian and Caucasian populations. S326C-Ogg1 is associated with various forms of cancer, and is inactivated by oxidation. However, whether oxidative stress caused by inflammatory cytokines compromises OGG1 variant repair activity remains unknown. We addressed whether TNF-α causes oxidative stress that both induces DNA damage and inactivates S326C-OGG1 via cysteine 326 oxidation. In mouse embryonic fibroblasts, we found that S326C-OGG1 was inactivated only after exposure to H2O2 or TNF-α. Treatment with the antioxidant N-acetylcysteine prior to oxidative stress rescued S326C-OGG1 activity, demonstrated by in vitro and cellular repair assays. In contrast, S326C-OGG1 activity was unaffected by potassium bromate, which induces oxidative DNA damage without causing oxidative stress, and presumably cysteine oxidation. This study reveals that Cys326 is vulnerable to oxidation that inactivates S326C-OGG1. Physiologically relevant levels of TNF-α simultaneously induce 8-oxodG and inactivate S326C-OGG1. These results suggest a mechanism that could contribute to increased risk of cancer among S326C-Ogg1 homozygous individuals.  相似文献   

10.
Polycyclic aromatic hydrocarbons (PAHs) appear to be significant contributors to the genotoxicity and carcinogenicity of air pollution present in the urban environment for humans. Populations exposed to environmental air pollution show increased levels of PAH DNA adducts and it has been postulated that another contributing cause of carcinogenicity by environmental air pollution may be the production of reactive oxygen species following oxidative stress leading to oxidative DNA damage. The antioxidant status as well as the genetic profile of an individual should in theory govern the amount of protection afforded against the deleterious effects associated with exposure to environmental air pollution. In this study we investigated the formation of total PAH (bulky) and B[a]P DNA adducts following exposure of individuals to environmental air pollution in three metropolitan cities and the effect on endogenously derived oxidative DNA damage. Furthermore, the influence of antioxidant status (vitamin levels) and genetic susceptibility of individuals with regard to DNA damage was also investigated. There was no significant correlation for individuals between the levels of vitamin A, vitamin E, vitamin C and folate with M1dG and 8-oxodG adducts as well as M1dG adducts with total PAH (bulky) or B[a]P DNA adducts. The interesting finding from this study was the significant negative correlation between the level of 8-oxodG adducts and the level of total PAH (bulky) and B[a]P DNA adducts implying that the repair of oxidative DNA damage may be enhanced. This correlation was most significant for those individuals that were non smokers or those unexposed to environmental air pollution. Furthermore the significant inverse correlation between 8-oxodG and B[a]P DNA adducts was confined to individuals carrying the wild type genotype for both the GSTM1 and the GSTT1 gene (separately and interacting). This effect was not observed for individuals carrying the null variant.  相似文献   

11.
No significant paraquat-induced oxidative DNA damage in rats   总被引:3,自引:0,他引:3  
The metabolism of paraquat generates oxygen radicals. Paraquat has thus been suggested as a model compound to induce oxidative damage to DNA, lipids and proteins in different cells and tissues, although experimental data are inconsistent. In order to explore the possibilities for an animal model of oxidative DNA damage in vivo, rats were treated with 20 mg/kg paraquat or vehicle i.p. One and five days later we measured DNA oxidation in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) in the liver and lung as well as the urinary excretion of 8-oxodG. No significant effects on the level of 8-oxodG in the liver, the lung or the urinary excretion, could be distinguished following paraquat treatment. We found, however, a significant correlation (r = 0.69; p<0.0002) between the 8-oxodG level in the lung and the urinary excretion, but no significant correlation between the level in the liver and the urinary excretion or between the levels in the liver and the lung. During the experiment the rats were clearly affected by the paraquat as they were very lethargic compared to the controls. Accordingly, even at toxic doses, paraquat did not cause detectable oxidative damage to DNA. The data do not support the use of paraquat as a model compound in experiments investigating effects or prevention of oxidative damage to DNA.  相似文献   

12.
Defective DNA damage processing has been reported in systemic lupus erythematosus (SLE). Vitamin C may modulate formation/removal of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodG). Baseline levels of 8-oxodG measured in SLE serum, urine and PBMC DNA did not differ significantly from healthy subjects. In contrast to healthy subjects, no significant decrease in PBMC 8-oxodG or increase in urinary 8-oxodG was noted in vitamin C supplemented SLE patients. A significant, although attenuated, increase in serum 8-oxodG was detected in SLE patients, compared to healthy subjects. These data support putative abnormalities in the repair/processing of 8-oxodG in SLE.  相似文献   

13.
We have used human single chain Fv (scFv) phage display antibody libraries to isolate recombinant antibodies against the DNA adduct 8-oxo-2'-deoxyguanosine (8-oxodG). One of these scFvs (175G) bound to several 8-oxodG-containing oligonucleotides whilst demonstrating no cross-reactivity with G-containing control oligonucleotides, and bound to 8-oxodG lesions introduced into DNA by treatment with methylene blue and white light. In addition, 175G inhibited the cleavage of an 8-oxodG-containing oligonucleotide by the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg). The nucleotide sequence of the 175G V(H) gene segment was 98% homologous to the published V(H) sequence of a human hybridoma derived from a patient with systemic lupus erythematosus (SLE). Sera from two SLE patients bound to damaged DNA, and this binding could be inhibited by 175G. The use of human scFv phage display libraries has thus produced a unique reagent with specificity for 8-oxodG, which may have a role in damage detection and quantitation and in modifying DNA repair activity. 175G also offers support to the hypothesis that SLE might be associated with oxidative damage to DNA.  相似文献   

14.
The free radical generating activity of airborne particulate matter (PM10) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2′-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5–150 μg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM10 collected daily (24 h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libuš and Smíchov), Košice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Košice, summer sampling. In this case, 2 h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 106 nucleotides with a value 3.5 per 106 nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value).

Based on these data we believe that EOM samples extracted from airborne particle PM10 play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or synergistic) with other PM components or physical factors (UV-A radiation) and in this way they might enhance/multiply the adverse health effects of air pollution.  相似文献   


15.
Oxidative damage to cellular biomolecules, in particular DNA, has been proposed to play an important role in a number of patholgical conditions, including carcinogenesis. A much studied consequence of oxygen-centred radical damage to DNA is 8-oxo-2′-deoxyguanosine (8-oxodG). Using numerous techniques, this lesion has been quantified in various biological matrices, most notably DNA and urine. Until recently, it was understood that urinary 8-oxodG derives solely from DNA repair, although the processes which may yield the modified deoxynucleoside have never been thoroughly discussed. This review suggests that nucleotide excision repair and the action of a specific endonuclease may, in addition to the nucleotide pool, contribute significantly to levels of 8-oxodG in the urine. On this basis, urinary 8-oxodG represents an important biomarker of generalised, cellular oxidative stress. Current data from antioxidant supplementation trials are examined and the potential for such compounds to modulate DNA repair is considered. It is stressed that further work is required to link DNA, serum and urinary levels of 8-oxodG such that the kinetics of formation and clearance may be elucidated, facilitating greater understanding of the role played by oxidative stress in disease.  相似文献   

16.
The metabolism of paraquat generates oxygen radicals. Paraquat has thus been suggested as a model compound to induce oxidative damage to DNA, lipids and proteins in different cells and tissues, although experimental data are inconsistent. In order to explore the possibilities for an animal model of oxidative DNA damage in vivo, rats were treated with 20 mg/kg paraquat or vehicle i.p. One and five days later we measured DNA oxidation in terms of 7-hydro-8-oxo-2′-deoxyguanosine (8-oxodG) in the liver and lung as well as the urinary excretion of 8-oxodG. No significant effects on the level of 8-oxodG in the liver, the lung or the urinary excretion, could be distinguished following paraquat treatment. We found, however, a significant correlation (r=0.69; p<0.0002) between the 8-oxodG level in the lung and the urinary excretion, but no significant correlation between the level in the liver and the urinary excretion or between the levels in the liver and the lung. During the experiment the rats were clearly affected by the paraquat as they were very lethargic compared to the controls. Accordingly, even at toxic doses, paraquat did not cause detectable oxidative damage to DNA. The data do not support the use of paraquat as a model compound in experiments investigating effects or prevention of oxidative damage to DNA.  相似文献   

17.
BACKGROUND: Previous studies in Denmark have shown that bus drivers and tramway employees were at an increased risk for developing several types of cancer and that bus drives from central Copenhagen have high levels of biomarkers of DNA damage.AIMS: The present study evaluates 1-hydroxypyrene concentrations and mutagenic activity in urine as biomarkers of exposure in non-smoking bus drivers in city and rural areas on a work day and a day off and in non-smoking mail carriers working outdoors (in the streets) and indoors (in the office). METHODS: Twenty-four hour urine samples were collected on a working day and a day off from 60 non-smoking bus drivers in city and rural areas and from 88 non-smoking mail carriers working outdoors (in the streets) and indoors (in the office). The concentration of 1-hydroxypyrene was measured by means of HPLC and the mutagenic activity was assessed by the Ames assay with Salmonella tester strain YG1021 and S9 mix. The N-acetyltransferase (NAT2) phenotype was used as a biomarker for susceptibility to mutagenic/carcinogenic compounds. RESULTS: Bus drivers excreted more 1-hydroxypyrene in urine than did mail carriers. The differences were slightly smaller when NAT2 phenotype, cooking at home, exposure to vehicle exhaust, and performing physical exercise after work were included. The NAT2 slow acetylators had 29% (1.29 [CI: 1.15-1.98]) higher 1-hydroxypyrene concentrations in urine than the fast acetylators. Male bus drivers had 0.92 revertants/mol creatinine [CI: 0.37-1.47] and female bus drivers 1.90 revertants/mol creatinine [CI: 1.01-2.79] higher mutagenic activity in urine than mail carriers. CONCLUSION: The present study indicates that bus drivers are more exposed to polycyclic aromatic hydrocarbons (PAH) and mutagens than mail carriers. Mail carriers who worked outdoors had higher urinary concentration of 1-hydroxypyrene, a marker of exposure to PAH, than those working indoors. The individual levels of urinary mutagenic activity were not correlated to excretion of 1-hydroxypyrene. This might be due to the fact that the most potent mutagenic compounds in diesel exhaust are not PAH but dinitro-pyrenes. Among bus drivers, fast NAT2 acetylators had higher mutagenic activity in urine than slow NAT2 acetylators and female bus drivers had higher mutagenic activity than male bus drivers.  相似文献   

18.
DNA repair: insights from urinary lesion analysis   总被引:1,自引:0,他引:1  
Due to various confounding factors, namely dietary contribution and cell death, measurement of urinary 8-oxo-2'-deoxyguanosine (8-oxodG) has long been considered to be no more than a marker of generalised oxidative stress. Indeed, the action of no single enzyme has been reported to excise 8-oxodG from DNA. However, analysis of recent research has suggested that these confounders may be circumvented, which, combined from work from the authors' laboratory, indicates that urinary 8-oxodG has the potential to become a most important marker of oxidative damage to, and repair of, DNA.  相似文献   

19.
The free radical generating activity of airborne particulate matter (PM10) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2′-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5–150 μg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM10 collected daily (24 h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libuš and Smíchov), Košice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Košice, summer sampling. In this case, 2 h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 106 nucleotides with a value 3.5 per 106 nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value).Based on these data we believe that EOM samples extracted from airborne particle PM10 play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or synergistic) with other PM components or physical factors (UV-A radiation) and in this way they might enhance/multiply the adverse health effects of air pollution.  相似文献   

20.
Measurement of the products of oxidatively damaged DNA in urine is a frequently used means by which oxidative stress may be assessed non-invasively. We believe that urinary DNA lesions, in addition to being biomarkers of oxidative stress, can potentially provide more specific information, for example, a reflection of repair activity. We used high-performance liquid chromatography prepurification, with gas chromatography-mass spectrometry (LC-GC-MS) and ELISA to the analysis of a number of oxidative [e.g., 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxo-7,8-dihydro-guanine, 5-(hydroxymethyl)uracil], non-oxidative (cyclobutane thymine dimers) and oligomeric DNA products in urine. We analysed spot urine samples from 20 healthy subjects, and 20 age- and sex-matched cancer patients. Mononuclear cell DNA 8-oxodG levels were assessed by LC-EC. The data support our proposal that urinary DNA lesion products are predominantly derived from DNA repair. Furthermore, analysis of DNA and urinary 8-oxodG in cancer patients and controls suggested reduced repair activity towards this lesion marker in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号