首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work was to investigate if a coculture system of human mesenchymal stem cells (hMSC) with endothelial cells (human umbilical vein endothelial cells, HUVEC) could modulate the phenotype and proliferation of harvested MSCs. In addition to previous investigations on the crosstalk between these two cell types, in the present work different relative cell ratios were analyzed for long, therapeutically relevant, culture periods. Moreover, MSCs osteogenic commitment was assessed in a non-osteogenic medium and in the presence of HUVECs through magnetic cell separation, cell quantification by flow cytometry, morphology by fluorescent microscopy, metabolic activity and gene expression of osteogenic markers. Collectively, the present findings demonstrate that, by coculturing MSCs with HUVECs, there was not only the promotion of osteogenic differentiation (and its enhancement, depending on the relative cell ratios used), but also a significant increase on MSCs proliferation. This augmentation in cell proliferation occurred independently of relative cell ratios, but was favored by higher relative amounts of HUVECs. Taken together, this data suggests that HUVECs not only modulate MSC phenotype but also their proliferation rate. Therefore, a coculture system of MSCs and HUVECs can a have a broad impact on bone tissue engineering approaches.  相似文献   

2.
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact‐dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p‐BAD‐dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.  相似文献   

4.
《Tissue & cell》2016,48(5):442-451
The repair and reconstruction of large bone defects remains as a significant clinical challenge mainly due to the insufficient vascularization. The prefabrication of vascular network based on cell sheet technique brings a promising potential for sufficient vascularization due to rich extracellular matrix (ECM) of cell sheets. However, the effect of different cell sheet ECM micro-environment on the formation of a vascular network has not been well understood. Here our goal is to study the effect of different cell sheets on the formation of a vascular network. First we cultured human bone marrow mesenchymal stem cells (hBMSCs) under two culture conditions to obtain osteogenic differentiated cell sheet (ODCS) and undifferentiated cell sheet (UDCS), respectively. Then the human umbilical vein endothelial cells (HUVECs) were seeded onto the surface of the two sheets at different seeding densities to fabricate pre-vascularized cell sheets. Our results indicated that the two sheets facilitated the alignment of HUVECs and promoted the formation of vascular networks. Quantitative analysis showed that the number of networks in ODCS was higher than that in the UDCS. The ECM of the two sheets was remodeled and rearranged during the tubulogenesis process. Furthermore, results showed that the optimal seeding density of HUVECs was 5 × 104 cell/cm2. In summary, these results suggest that the vascularized ODCS has a promising potential to construct pre-vascularized tissue for bone repair.  相似文献   

5.
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell‐based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex‐vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi‐analytical methods, some of them time‐consuming. The present work evaluates the use of mid‐infrared (MIR) spectroscopy, through rapid and economic high‐throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno‐free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:447–455, 2016  相似文献   

6.
7.
We have previously demonstrated that collagen type XV (ColXV) is a novel bone extracellular matrix (ECM) protein. It is well known that the complex mixture of multiple components present in ECM can help both to maintain stemness or to promote differentiation of stromal cells following change in qualitative characteristics or concentrations. We investigated the possible correlation between ColXV expression and mineral matrix deposition by human mesenchymal stromal cells (hMSCs) with different osteogenic potential and by osteoblasts (hOBs) that are able to grow in culture medium with or without calcium. Analysing the osteogenic process, we have shown that ColXV basal levels are lower in cells less prone to osteo‐induction such as hMSCs from Wharton Jelly (hWJMSCs), compared to hMSCs that are prone to osteo‐induction such as those from the bone marrow (hBMMSCs). In the group of samples identified as ‘mineralized MSCs’, during successful osteogenic induction, ColXV protein continued to be detected at substantial levels until early stage of differentiation, but it significantly decreased and then disappeared at the end of culture when the matrix formed was completely calcified. The possibility to grow hOBs in culture medium without calcium corroborated the results obtained with hMSCs demonstrating that calcium deposits organized in a calcified matrix, and not calcium ‘per se’, negatively affected ColXV expression. As a whole, our data suggest that ColXV may participate in ECM organization in the early‐phases of the osteogenic process and that this is a prerequisite to promote the subsequent deposition of mineral matrix.  相似文献   

8.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

10.
The surface marker profile of mesenchymal stromal cells (MSCs) suggests that they can escape detection by the immune system of an allogeneic host. This could be an optimal strategy for bone regeneration applications, where off‐the‐shelf cells could be implanted to heal bone defects. However, it is unknown how pre‐differentiation of MSCs to an osteogenic lineage, a means of improving bone formation, affects their immunogenicity. Using immunohistological techniques in a rat ectopic implantation model, we demonstrate that allogeneic osteoprogenitors mount a T cell‐ and B cell‐mediated immune response resulting in an absence of in vivo bone formation. Suppression of the host immune response with daily administration of an immunosuppressant, FK506, is effective in preventing the immune attack on the allogeneic osteoprogenitors. In the immunosuppressed environment, the allogeneic osteoprogenitors are capable of generating bone in amounts similar to those of syngeneic cells. However, using osteoprogenitors from one of the allogeneic donors led to newly deposited bone that was attacked by the host immune system, despite the continued administration of the immunosuppressant. This suggests that, although using an immunosuppressant can potentially suppress the immune attack on the allogeneic cells, optimizing the dose of the immunosuppressant may be crucial to ensure bone formation within the allogeneic environment. Overall, allografts comprising osteoprogenitors derived from allogeneic MSCs have the potential to be used in bone regeneration applications.  相似文献   

11.
D Yao  XH Xie  XL Wang  C Wan  YW Lee  SH Chen  DQ Pei  YX Wang  G Li  L Qin 《PloS one》2012,7(8):e41264
We found that Icaritin, an intestinal metabolite of Epimedium-derived flavonoids (EF) enhanced osteoblastic differentiation of mesenchymal stem cells (MSCs) only under osteogenic induction conditions. We also demonstrated its effect on inhibition of adipogenic differentiation of MSCs. Unlike the findings of others on EF compounds, we showed that Icaritin was unable to promote proliferation, migration and tube like structure formation by human umbilical vein endothelial cells (HUVECs) in vitro. These results suggested that the exogenous phytomolecule Icaritin possessed the potential for enhancing bone formation via its osteopromotive but not an osteoinductive mechanism. Though some flavonoids were shown to regulate the coupling process of angiogenesis and osteogenesis during bone repair, our results suggested that Icaritin did not have direct effect on enhancing angiogenesis in vitro.  相似文献   

12.
Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence‐associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence‐associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic‐Senescence‐Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar‐coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic‐Senescence‐Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence‐associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co‐regulated. They rather appear to be acquired stochastically—potentially evoked by other epigenetic modifications.  相似文献   

13.
In this paper we describe an approach that aims to provide fundamental information towards a scientific, biomechanical basis for the use of natural coral scaffolds to initiate mesenchymal stem cells into osteogenic differentiation for transplant purposes. Biomaterial, such as corals, is an osteoconductive material that can be used to home human derived stem cells for clinical regenerative purposes. In bone transplantation, the use of biomaterials may be a solution to bypass two main critical obstacles, the shortage of donor sites for autografts and the risk of rejection with allograft procedures. Bone regeneration is often needed for multiple clinical purposes for instance, in aesthetic reconstruction and regenerative procedures. Coral graft Porites lutea has been used by our team for a decade in clinical applications on over a thousand patients with different bone pathologies including spinal stenosis and mandibular reconstruction. It is well accepted that human bone marrow (hBM) is an exceptional source of mesenchymal stem cells (MSCs), which may differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. Isolated MSCs from human bone marrow were induced into osteoblasts using an osteogenic medium enriched with two specific growth factors, FGF9 and vitamin D2. Part of the cultured MSCs were directly transferred and seeded onto coral scaffolds (Porites Lutea) and induced to differentiate into osteoblasts and part were cultured in flasks for osteocell culture. The data support the concept that hBM is a reliable source of MSCs which may be easily differentiated into osteoblasts and seeded into coral as an optimal device for clinical application. Within this project we have also discussed the biological nature of MSCs, their potential application for clinical transplantation and the prospect of their use in gene therapy.  相似文献   

14.
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.  相似文献   

15.
We had previously demonstrated the feasibility of preparing a centimeter-sized bone tissue construct by following a modular approach. In the present study, the objectives were to evaluate osteogenesis and tissue formation of human amniotic mesenchymal stem cells-laden CultiSpher S microcarriers during in vitro perfusion culture and after subcutaneous implantation. Microtissues were prepared in dynamic culture using spinner flasks in 28 days. In comparison with 1-week perfusion culture, microtissues became more obviously fused, demonstrating significantly higher cellularity, metabolic activity, ALP activity and calcium content while maintaining cell viability after 2-week perfusion. After subcutaneous implantation in nude mice for 6 and 12 weeks, all explants showed tight contexture, suggesting profound tissue remodeling in vivo. In addition, 12-week implantation resulted in slightly better tissue properties. However, in vitro perfusion culture time exerted great influence on the properties of corresponding explants. Degradation of microcarriers was more pronounced in the explants of 2-week perfused macrotissues compared to those of 1-week perfusion and directly implanted microtissues. Moreover, more blood vessel infiltration and bone matrix deposition with homogeneous spatial distribution were found in the explants of 2-week perfused macrotissues. Taken together, in vitro perfusion culture time is critical in engineering bone tissue replacements using such a modular approach, which holds great promise for bone regeneration.  相似文献   

16.
Prostate cancer frequently metastasizes to the bone, and the interaction between cancer cells and bone microenvironment has proven to be crucial in the establishment of new metastases. Bone marrow mesenchymal stem cells (BM‐MSCs) secrete various cytokines that can regulate the behaviour of neighbouring cell. However, little is known about the role of BM‐MSCs in influencing the migration and the invasion of prostate cancer cells. We hypothesize that the stromal cell‐derived factor‐1α released by BM‐MSCs may play a pivotal role in these processes. To study the interaction between factors secreted by BM‐MSCs and prostate cancer cells we established an in vitro model of transwell co‐culture of BM‐MSCs and prostate cancer cells DU145. Using this model, we have shown that BM‐MSCs produce soluble factors which increase the motility of prostate cancer cells DU145. Neutralization of stromal cell‐derived factor‐1α (SDF1α) via a blocking antibody significantly limits the chemoattractive effect of bone marrow MSCs. Moreover, soluble factors produced by BM‐MSCs greatly activate prosurvival kinases, namely AKT and ERK 1/2. We provide further evidence that SDF1α is involved in the interaction between prostate cancer cells and BM‐MSCs. Such interaction may play an important role in the migration and the invasion of prostate cancer cells within bone.  相似文献   

17.
Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200pos cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up‐regulated in CD200pos cells compared to CD200neg fraction. At the functional level, CD200pos cells were prone to mineralize the extra‐cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200pos cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down‐regulated. As dexamethasone has anti‐inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro‐inflammatory cytokines interleukin‐1β and tumour necrosis factor‐α increased CD200 membrane expression but down‐regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro‐inflammatory or pro‐osteogenic, CD200 expression was down‐regulated when nuclear‐factor (NF)‐κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro‐inflammatory cytokines through the same pathway: NF‐κB.  相似文献   

18.
19.
Objectives: This study has aimed to repopulate ‘primitive’ cells from late‐passage mesenchymal stem cells (MSCs) of poor multipotentiality and low cell proliferation rate, by simply altering plating density. Materials and methods: Effects of low density culture compared t high density culture on late‐passage bone marrow (BM)‐derived MSCs and pluripotency markers of multipotentiality were investigated. Cell proliferation, gene expression, RNA interference and differentiation potential were assayed. Results and conclusions: We repopulated ‘primitive’ cells by replating late‐passage MSCs at low density (17 cells/cm2) regardless of donor age. Repopulated MSCs from low‐density culture were smaller cells with spindle shaped morphology compared to MSCs from high‐density culture. The latter had enhanced colony‐forming ability, proliferation rate, and adipogenic and chondrogenic potential. Strong expression of osteogenic‐related genes (Cbfa1, Dlx5, alkaline phosphatase and type Ι collagen) in late‐passage MSCs was reduced by replating at low density, whereas expression of three pluripotency markers (Sox2, Nanog and Oct‐4), Osterix and Msx2 reverted to levels of early‐passage MSCs. Knockdown of Sox2 and Msx2 but not Nanog, using RNA interference, showed significant decrease in colony‐forming ability. Specifically, knockdown of Sox2 significantly inhibited multipotentiality and cell proliferation. Our data suggest that plating density should be considered to be a critical factor for enrichment of ‘primitive’ cells from heterogeneous BM and that replicative senescence and multipotentiality of MSCs during in vitro expansion may be predominantly regulated through Sox2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号