首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oscillating chemiluminescence enhanced by the addition of tri‐n‐propylamine (TPrA) to the typical Belousov–Zhabotinsky (BZ) reaction system catalyzed by ruthenium(II)tris(2.2'‐bipyridine)(Ru(bpy)32+) was investigated using a luminometry method. The [Ru(bpy)3]2+/TPrA system was first used as the catalyst for a BZ oscillator in a closed system, which exhibited a shorter induction period, higher amplitude and much more stable chemiluminescence (CL) oscillation. The effects of various concentrations of TPrA, oxygen and nitrogen flow rate on the oscillating behavior of this system were examined. In addition, the CL intensity of the [Ru(bpy)3]2+/TPrA–BZ system was found to be inhibited by phenol, thus providing a way for use of the BZ system in the determination of phenolic compounds. Moreover, the possible mechanism of the oscillating CL reaction catalyzed by [Ru(bpy)3]2+/TPrA and the inhibition effects of oxygen and phenol on this oscillating CL system were considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This method is based on the enhancing effect of codeine (COD) and paracetamol (PAR) on the chemiluminescence (CL) reaction of Ru(phen)32+ with Ce(IV). In the batch mode, COD gives a relatively sharp peak with the highest CL intensity at 4.0 s, whereas the maximum CL intensity of the PAR appears at ~60 s after injection of Ce(IV) solution. Whole CL time profiles allowed use of the time‐resolved CL data in combination with multiway calibration techniques, as multiway partial least squares (N‐PLS), for the quantitative determination of both COD and PAR in binary mixtures. In this work, we found that the impact of Ce(IV) concentration on the CL intensity was different for COD and PAR. Therefore, a Ce(IV) concentration mode was added to the time and sample modes to obtain 3D data. The percent relative standard deviation (%RSD) values for 10 determinations of 1.0 × 10?5 mol/L of COD and 1.0 × 10?4 mol/L of PAR were 6.1% and 8.7%, respectively. The limit of detection (LOD) values (S/N = 3) were 0.9 × 10?8 mol/L and 1.0 × 10?6 mol/L for COD and PAR, respectively. The proposed method was successfully applied to the determination of PAR and COD in commercial pharmaceutical formulations. Acceptable recoveries (90–110%) were obtained for the quantification of these drugs in the real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new method for the analysis of mebeverine hydrochloride (MEB) has been developed using a two‐chip device. The method is highly selective, sensitive, rapid and consumes minute amount of reagents. The developed method is free of interference from the degradation products of MEB and from common ingredients present in pharmaceutical formulations. The limit of detection was 0.043 µg/mL, and the limit of quantification was 0.138 µg/mL. The short analysis time per sample (20 s) allowed a large number of analyses to be performed within a very short time. Various samples were analyzed, including two different pharmaceutical formulations and a uniformity of content analysis for 20 tablets from a known batch and two biological samples at different concentrations. In addition, the method was compared with a validated high‐performance liquid chromatography (HPLC) method and the results clearly indicated the suitability of the developed method for routine analyses. A new mechanism for the tris(2,2'‐bipyridyl)ruthenium(II) (Ru(bpy)32+)‐peroxodisulfate (S2O82?) chemiluminescence (CL) system has also been proposed. The mechanism is based on photoinduced oxidation of Ru(bpy)32+ to Ru(bpy)33+ via the formation of Ru(bpy)32+* upon irradiation with visible light. S2O82? then oxidizes Ru(bpy)32+* to Ru(bpy)33+ and the analyte subsequently reduces the resultant Ru(bpy)33+ to Ru(bpy)32+*, which then produces the CL signal. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
《Luminescence》2002,17(2):117-122
The electrogenerated chemiluminescence of Ru(bpy)32+/C2O42? system on a pre‐polarized Au electrode was studied using a potential‐resolved electrochemiluminescence (PRECL) method. Two anodic ECL peaks were observed at 1.22 V (vs. SCE) (EP1), 1.41 V (vs. SCE) (EP2), respectively. The effects of the concentration of oxalate and Ru(bpy)32+, adsorbed sulphur, CO2, O2, pH of the solution and pretreatment of the Au electrode on the two PRECL peaks were examined. The surface state of the pre‐oxidized gold electrode was also studied using the X‐ray photoelectron spectroscopy (XPS) technique. Moreover, comparative studies on i–E and I–E curves were carried out and a possible mechanism involving both the catalytic and the direct electro‐oxidation pathways was proposed for the ECL of Ru(bpy)32+/C2O42? system. EP1 is attributed to the Ru(bpy)32/3+ reaction catalysed by C2O42? to generate Ru(bpy)32+*. EP2 is likely because C2O42? was oxidized at the electrode to form CO2, followed by reaction with Ru(bpy)33+ to generate Ru(bpy)32+*. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Manganese dioxide is shown to be the catalyst of oxygen evolution at the oxidation of water by the one-electron oxidant Ru(bpy)33+ in neutral and slightly acidic media. Catalytic activity of MnO2 depends on the method of preparation, the most active samples being those consisting of the smallest particles, i.e., having the largest surface-to-volume ratio. Ru(bpy)33+ was found to be formed at the irradiation of Ru(bpy)32+ solutions by visible light (λ = 436 nm) in the presence of such acceptors as Ce(IV), Hg(II), and Mn(IV) pyrophosphate. Continuous O2 evolution from water is observed when the system Mn(IV) pyrophosphate plus Ru(bpy)32+ plus MnO2 is irradiated by visible light. The system is discussed in connection with the active center of photosystem II of plant photosynthesis.  相似文献   

6.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The electrochemiluminescence (ECL) of tris(2,2‐bipyridyl)ruthenium [Ru(bpy)3]2+ has received much attention. By immobilizing [Ru(bpy)3]2+ on an electrode surface, solid‐state ECL has several advantages over solution‐phase ECL, such as reduced amounts of costly reagent and a simplified experimental design. Herein, different types of solid‐state ECL sensors were fabricated and the performances of paraffin oil and two ionic liquids (ILs) as the binders were compared for the construction of solid‐state ECL. Scanning electron microscopy (SEM), CCD camera, UV–vis, fluorescence spectroscopy, electrochemistry and ECL were applied to characterize and evaluate the performance of the solid‐state composites. According to the obtained results, Ru–graphite/IL octyl pyridinium hexaflurophosphate (OPPF6) was introduced as a new solid‐state ECL with excellent properties such as simple preparation, low background current, fast electron‐transfer rate and good reproducibility and stability. Moreover, for a study of the effect of carbon structure on the performance of the electrode, graphite was replaced by multi‐walled carbon nanotubes (MWCNTs) and Ru–MWCNT/OPPF6 was constructed and its efficiency was compared with Ru–graphite/OPPF6 composite electrode. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Oxalate is quantitated in both urine and plasma samples using reversed-phase ion-pair high-performance liquid chromatography (HPLC) with tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+]-electrogenerated chemiluminescent (ECL) detection. Underivatized oxalate was separated on a reversed-phase column (Zorbax ODS) using a mobile phase of 10% methanol in 100 mM phsophate buffer at pH 7.0. The eluted compounds were combined with a stream of 2 mM Ru(bpy)32+ at a mixing tee before the ECL flow-cell. In the flow-cell, Ru(bpy)32+ is oxidized to Ru(bpy)32+ at a platinum electrode, and reacts with oxalate to produce chemiluminescence (CL). Urine samples were filtered and diluted prior to injection. Plasma samples were deproteinized before injection. A 25-μl aliquot of sample was injected for analysis. Possible interferants, including amino acids and indole-based compounds, present in biological samples were investigated. Without the separation, amino acids interfere by increasing the total observed CL intensity; this is expected because they give rise to CL emission on their own in reaction with Ru(bpy)33+. Indole compounds exhibit a unique interference by decreasing the CL signal when present with oxalate. Indoles inhibit their own CL emission at high concentration. By use of the indicated HPLC separation, oxalate was adequately separated from both types of interferants, which thus had no effect on the oxalate signal. Urine samples were assayed by both HPLC and enzymatic tests, the two techniques giving similar results, differing only by 1%. Detection limits were determined to be below 1 μM (1 nmol/ml) or 25 pmol injected. The working curve for oxalate was linear throughout the entire clinical range in both urine and plasma.  相似文献   

9.
Based on the strong enhancement effect of procaterol hydrochloride on the electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridine) in an alkaline H3PO4–NaOH buffer solution on a bare Pt electrode, a simple, rapid and sensitive method was developed for the determination of procaterol hydrochloride. The optimum conditions for the enhanced ECL have been developed in detail in this work. Under optimum conditions, the logarithmic ECL enhancement vs. the logarithmic concentration of procaterol hydrochloride is linear over a wide concentration range of 2.0 × 10?7 to 2.0 × 10?4 M (r =  0.9976), with a limit of detection of 1.1 × 10?8 M (S/N =  3), and a relative standard deviation of 2.1% (n =  7, c =  5.0 × 10?6 M). The proposed method was applied to the determination of this drug in tablets with recoveries of 89.7%–98.5%. In addition, a possible mechanism for the enhanced ECL of Ru(bpy)32+, which is caused by ProH, has also been proposed.  相似文献   

10.
In this study, electrochemiluminescence (ECL) of Ru(bpy)32+ (bpy = 2,2′‐bipyridyl) using ascorbic acid (H2A) as co‐reactant was investigated in an aqueous solution. When H2A was co‐existent in a Ru(bpy)32+‐containing buffer solution, ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)32+, and the intensity was proportional to H2A concentration at lower concentration levels. The formation of the excited state *Ru(bpy)32+ was confirmed to result from the co‐reaction between Ru(bpy)33+and the intermediate of ascorbate anion radical (A•), which showed the maximum ECL at pH = 8.8. It is our first finding that the ECL intensity would be quenched significantly when the concentration of H2A was relatively higher, or upon ultrasonic irradiation. In most instances, quenching is observed with four‐fold excess of H2A over Ru(bpy)32+. The diffusional self‐quenching scheme as well as the possible reaction pathways involved in the Ru(bpy)32+–H2A ECL system are discussed in this study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The stopped-flow technique was employed to measure chemiluminescent emission from the reaction of a mixture of oxalate and proline with a chemiluminescence reagent, tris(2,2′-bipyridine)ruthenium(III), or Ru(bpy)33+. Ru(bpy)33+ is a versatile reagent and is often used in bioanalytical applications, including the detection of certain drugs and their metabolites, for example. Unfortunately, Ru(bpy)33+ has not yet been fully examined as a possible chemiluminescence reagent for simultaneous kinetic determinations. In this work, a differential reaction rate method, based on simple least squares regressions of the pseudo-first order decay data, was used to resolve two compounds, oxalate and proline, reacting simultaneously with Ru(bpy)33+. Our results indicate that stopped-flow analyses with Ru(bpy)33+ could provide a viable method for simultaneous determinations of unresolvable analytes of environmental and pharmaceutical importance. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Although the clinical use of immunoassays based on the oxidative‐reduction electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium (II)/tri‐n‐propylamine has been a great success, elucidation of the ECL generation mechanism still remains unsatisfactory. We report here our experimental observations of long‐lived luminescence that remains detectable for several seconds after termination of electrochemical heterogeneous oxidation. Long‐lived luminescence was observed in both a surfactant‐free buffer and a surfactant‐containing broadly used commercial buffer under different conditions. The slow decay of emission seems to have been unnoticed in previous ECL mechanistic studies. Within the frame of the reaction schemes so far proposed, its origin is inconclusively ascribed to the reductive‐oxidation process of ruthenium (II) complex, that is Ru(bpy)32+ → Ru(bpy)31+ → Ru(bpy)32+* → Ru(bpy)32+ with the involvement of the tri‐n‐propylamine‐derived radical cation. It is anticipated that long‐lived ECL will suggest a research approach to separate some homogeneous reactions from the complicated reaction system and therefore help to resolve the mechanistic mystery.  相似文献   

13.
A simple and sensitive electrochemiluminescence (ECL) method for the determination of etamsylate has been developed by coupling an electrochemical flow‐through cell with a tris(2,2'‐bipyridyl)ruthenium(II) (Ru(bpy)32+)–Nafion‐modified carbon electrode. It is based on the oxidized Ru(bpy)32+ on the electrode surface reacting with etamsylate and producing an excellent ECL signal. Under optimized experimental conditions, the proposed method allows the measurement of etamsylate over the range of 8–1000 ng/mL with a correlation coefficient of r = 0.9997 (n = 7) and a limit of detection of 1.57 ng/mL (3σ), the relative standard deviation (RSD) for 1000 ng/mL etamsylate (n = 7) is 0.96%. The immobilized Ru(bpy)32+ carbon paste electrode shows good electrochemical and photochemical stability. This method is rapid, simple, sensitive and has good reproducibility. It has been successfully applied to the determination of the studied etamsylate in pharmaceutical preparations with satisfactory results. The possible ECL reaction mechanism has also been discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《Inorganica chimica acta》1988,148(1):97-100
Six photoproducts were observed in the photolysis of [Ru(bpy)3]2+ in N,N-dimethylformamide (DMF) in the presence of chloride ions. The primary products were cis-[Ru(bpy)2Cl2] and cis-[Ru(bpy)2-(DMF)Cl]+. The remaining ruthenium products, which were thermally unstable to varying degrees, were cis-[Ru(bpy)2Cl2]+, [Ru(bpy)3]+, and a binuclear species we have tentatively identified as [Ru(bpy)2Cl]2n+ (n = 3 or 4).  相似文献   

15.
This paper reports a flow‐injection chemiluminescence method for the determination of ofloxacin (OFLX) using the Ru(bpy)2(CIP)2+–Ce(IV) system. Under the optimum conditions, the relative CL intensity was proportional to the concentration of OFLX in the range 3.0 × 10–8–1.0 × 10–5 mol/L and the detection limit was 4.2 × 10–9 mol/L. The proposed method has been successfully applied to the determination of ofloxacin in pharmaceuticals and human urine. The chemiluminescence mechanism of the system is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We present an innovative and sensitive electrogenerated chemiluminescence (ECL) strategy for observing the surface feature of a single silica nanoparticle based on its collision with an ultramicroelectrode (UME). As an ECL luminophore, Ru(bpy)32+ molecules are doped into silica nanoparticles. The stochastic collision events of Ru(bpy)32+‐doped silica nanoparticles (RuSNPs) can be tracked by observing the ECL ‘blips’ from the ECL reaction of Ru(bpy)32+ with a coreactant in solution. When RuSNPs collided with UME, Ru(bpy)32+ molecules that only exist near the collision site of silica nanoparticles (NPs) were electrochemically oxidized to form Ru(bpy)33+, and then emitted light, because silica NPs are insulated. The inhomogeneous properties of silica nanoparticle surfaces will produce diverse ECL blips in intensity and shape. In addition, distribution gradients from the he Ru(bpy)32+ in a silica matrix also affect ECL blips. Some information on the surface properties of silica NPs can be obtained by observation of single silica collision events.  相似文献   

17.
18.
Quenching effects of bergenin, based on the electrochemiluminescence (ECL) of the tris(2,2′‐bipyridyl)‐ruthenium(II) (Ru(bpy)32+)/tri‐n‐propylamine (TPrA) system in aqueous solution, is been described. The quenching behavior can be observed with a 100‐fold excess of bergenin over Ru(bpy)32+. In the presence of 0.1 m TPrA, the Stern–Volmer constant (KSV) of the ECL quenching is as high as 1.16 × 104 M?1 for bergenin. The logarithmic plot of the inhibited ECL versus logarithmic plot of the concentration of bergenin was linear over the range 3.0 × 10?6–1.0 × 10?4 mol/L. The corresponding limit of detection was 6.0 × 10?7 mol/L for bergenin (S/N = 3). In the mechanism of quenching it is believed that the competition of the active free radicals between Ru(bpy)32+/TPrA and bergenin was the key factor for the ECL inhibition of the system. Photoluminescence, cyclic voltammetry, coupled with bulk electrolysis, supports the supposition mechanism of the Ru(bpy)32+/TPrA–bergenin system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Tetrapodal ligands H4L1 and H4L2 containing imidazole groups have been synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,2,4,5‐tetrakis[(4‐formylphenoxy)methyl]benzene and 1,2,4,5‐tetrakis[(3‐formylphenoxy)methyl]benzene, respectively, in presence of NH4OAc. Two star‐shaped complexes [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8 (bpy = 2,2′‐bipyridine) have been prepared by refluxing Ru(bpy)2Cl2·2H2O and each ligand in ethylene glycol. The deprotonated complexes [{Ru(bpy)2}44‐L1)](PF6)4 and [{Ru(bpy)2}44‐L2)](PF6)4 have been obtained by the reaction of sodium methoxide with [{Ru(bpy)2}44‐H4L1)](PF6)8 and [{Ru(bpy)2}44‐H4L2)](PF6)8, respectively, in methanol. The pH effects on the UV–vis light absorption and emission spectra of both complexes have been studied, and ground‐ and excited‐state ionization constants of both complexes have been derived. The photophysical properties of both complexes are strongly dependent on the solution pH. They act as proton‐induced off–on–off luminescent sensors through two successive deprotonation processes of imidazole groups, with a maximum on–off ratio of 8 in buffer solution at room temperature. Theoretical calculations for the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LOMO) orbitals of bridging ligand are also presented for plausible explanations of the fluorescence changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Based on the strong electrochemiluminescence (ECL) reaction between thiamazole and tris(2,2′‐bipyridine)ruthenium(II) (Ru(bpy)32+), a sensitive, simple and rapid flow injection analysis method for the determination of thiamazole was developed. When a Pt working electrode was maintained at a potential of +1.50 V (vs Ag/AgCl) in pH 12.0 H3PO4–NaOH solution containing thiamazole and Ru(bpy)32+ at a flow rate of 1.0 mL/min, a linear range of 2.0 × 10−7–1.0 × 10−4 mol/L with a detection limit of 5.0 × 10−8 mol/L was obtained for the detection of thiamazole. The method showed good reproducibility with a relative standard deviation (RSD) of 0.75%. The method has been successfully applied to the determination of thiamazole in spiked animal feeds. In addition, a co‐reactant ECL mechanism was proposed for the thiamazole–Ru(bpy)32+ system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号