首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large peptidyl-prolyl cis/trans isomerases (PPIases) are important components of the Hsp90 chaperone complex. In mammalian cells, either Cyp40, FKBP51 or FKBP52 is incorporated into these complexes. It has been suggested that members of this protein family exhibit both prolyl isomerase and chaperone activity. Here we define the structural and functional properties of the three mammalian large PPIases. We find that in all cases two PPIase monomers bind to an Hsp90 dimer. However, the affinities of the PPIases are different with FKBP52 exhibiting the strongest interaction and Cyp40 the weakest. Furthermore, in the mammalian system, in contrast to the yeast system, the catalytic activity of prolyl isomerization corresponds well to that of the respective small PPIases. Interestingly, Cyp40 and FKBP51 are the more potent chaperones. Thus, it seems that both the affinity for Hsp90 and the differences in their chaperone properties, which may reflect their interaction with the non-native protein in the Hsp90 complex, are critical for the selective incorporation of a specific large PPIase.  相似文献   

2.
3.
FKBP65 is a protein of the endoplasmic reticulum that is relatively abundant in elastin-producing cells and is associated with tropoelastin in the secretory pathway. To test an earlier suggestion by Davis and co-workers that FKBP65 could act as an intracellular chaperone for elastin, we obtained recombinant FKBP65 (rFKBP65) by expressing it in E.?coli and examined its effect on the coacervation characteristics of chicken aorta tropoelastin (TE) using an in vitro turbidimetric assay. Our results reveal that rFKBP65 markedly promotes the initiation of coacervation of TE without significantly affecting the temperature of onset of coacervation. This effect shows saturation at a 1:2 molar ratio of TE to rFKBP65. By contrast, FKBP12, a peptidyl prolyl isomerase, has a negligible effect on TE coacervation. Moreover, the effect of rFKBP65 on TE coacervation is unaffected by the addition of rapamycin, an inhibitor of peptidyl prolyl isomerase (PPIase) activity. These observations rule out the involvement of the PPIase activity of rFKBP65 in modulating the coacervation of TE. Additional experiments using a polypeptide model of TE showed that rFKBP65, while promoting coacervation, may retard the maturation of this model polypeptide into larger aggregates. Based on these results, we suggest that FKBP65 may act as an elastin chaperone in vivo by controlling both the coacervation and the maturation stages of its self-assembly into fibrils.  相似文献   

4.
Localization of the chaperone domain of FKBP52   总被引:3,自引:0,他引:3  
FKBP52, a multidomain peptidyl prolyl cis/trans-isomerase (PPIase), is found in complex with the chaperone Hsp90 and the co-chaperone p23. It displays both PPIase and chaperone activity in vitro. To localize these two activities to specific regions of the protein, we created and analyzed a set of fragments of FKBP52. The PPIase activity toward both peptides and proteins is confined entirely to domain 1 (amino acids 1-148). The chaperone activity, however, resides in the C-terminal part of FKBP52, mainly in the region between amino acids 264 and 400 (domain 3). Interestingly, this domain also contains the tetratricopeptide repeats, which are responsible for the binding to C-terminal amino acids of Hsp90. Competition assays with a C-terminal Hsp90 peptide suggest that the non-native protein and Hsp90 are bound by different regions within this domain.  相似文献   

5.
We report a novel chromatin-modulating factor, nuclear FK506-binding protein (FKBP). It is a member of the peptidyl prolyl cis-trans isomerase (PPIase) family, whose members were originally identified as enzymes that assist in the proper folding of polypeptides. The endogenous FKBP gene is required for the in vivo silencing of gene expression at the rDNA locus and FKBP has histone chaperone activity in vitro. Both of these properties depend on the N-terminal non-PPIase domain of the protein. The C-terminal PPIase domain is not essential for the histone chaperone activity in vitro, but it regulates rDNA silencing in vivo. Chromatin immunoprecipitation showed that nuclear FKBP associates with chromatin at rDNA loci in vivo. These in vivo and in vitro findings in nuclear FKBPs reveal a hitherto unsuspected link between PPIases and the alteration of chromatin structure.  相似文献   

6.
7.
8.
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.  相似文献   

9.
Wheat root tips express a 73 kDa cognate isoform and a 77 kDa heat-shock-induced isoform of peptidyl prolyl cis-trans isomerase (FK506 binding protein; FKBP) that is part of a chaperone complex with hsp90. The 73 kDa and 77 kDa FKBPs have very similar sequences, differing primarily in the N- and C-terminal 20 amino acids. In order to define the potential functional roles of these proteins, the 73 kDa and 77 kDa FKBPs were localized in root tips using antigen-affinity purified antibodies as a probe. The cognate 73 kDa FKBP is localized in the cytoplasm and appears enriched around the periphery of the early vacuole and vesicles exiting the trans-Golgi. Parallel assays with antibodies directed against tonoplast aquaporin and pyrophosphatase confirmed the association of FKBP with an early vacuole compartment. Sucrose gradient centrifugation analysis of root tip lysates also showed that 73 kDa FKBP is co-fractionated with tonoplast aquaporin and V-ATPase in a light compartment near the top of the gradient. Heat-shock treatment of root tips induces the accumulation of 77 kDa FKBP while the abundance of 73 kDa FKBP remains constant. Quantitative EM immunogold assays of the intracellular distribution of FKBP over an 8 h heat-shock time-course showed that FKBP is initially present in the cytoplasm, but is transported into the nucleus where it accumulates in the nucleoplasm and into specific subnuclear domains. The results of this study show that the intracellular distribution of the high Mr FKBPs in wheat root tips differs at normal and elevated temperatures, indicating different functional roles for the FKBP isoforms.  相似文献   

10.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

11.
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.  相似文献   

12.
13.
Wheat FKBP73 (wFKBP73) belongs to the FK506-binding protein (FKBP) family which, in common with the cyclophilin and parvulin families, possesses peptidyl prolylcis-trans isomerase (PPIase) activity. Wheat FKBP73 has been shown to contain three FKBP12-like domains, a tetratricopeptide repeat (TPR) via which it binds heat shock protein 90 and a calmodulin-binding domain (CaMbd). In this study we investigated: (1) the contribution of the N-terminal and C-terminal moieties of wFKBP73 to its biological activity by over-expression of the prolyl isomerase domains in transgenic rice, and (2) the biochemical characteristics of the C-terminal moiety. The recombinant wFKBP73 was found to bind calmodulin via the CaMbd and to be present mainly as a dimer in solution. The dimerization was abrogated when 138 amino acids from the C-terminal half were deleted. Expression of the full-length FKBP73 produced fertile rice plants, whereas the expression of the peptidyl prolyl cis-trans isomerase domains in transgenic rice resulted in male-sterile plants. The male sterility was expressed at various stages of anther development with arrest of normal pollen development occurring after separation of the microspores from the tetrads. Although the direct cause of the dominant male sterility is not yet defined, we suggest that it is associated with a novel interaction of the prolyl isomerase domains with anther specific target proteins.  相似文献   

14.
Transient gene expression in mammalian cells is an efficient process for producing recombinant proteins for various research applications to support large molecule therapeutics development. For the first time, we report a high throughput small molecule (SM) screen to identify novel compounds that increase antibody titers after polyethylenimine (PEI) transient transfection of a HEK293 cell line. After screening 31,413 SMs in a 50 μL scaled‐down process, we validated 164 SMs to improve yields by up to twofold. The titer increase mediated by the SMs varied for different antibodies. SM dose optimizations resulted in almost threefold higher titers. The top 2, structurally distinct SM hits, increased antibody titers more than twofold in a 1 mL production process. Averaged across three antibodies of different expression levels, the compounds enhanced transient productivity by ~80%. Intriguingly, both compounds arrested cells in the G2/M cell cycle phase leading to a decrease in growth and nutrient consumption, while elevating titer, nuclear plasmid DNA (pDNA) copy numbers, and mRNA levels. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 3:1579–1588, 2017  相似文献   

15.
The increasing demand for antibody-based therapeutics has emphasized the need for technologies to improve recombinant antibody titers from mammalian cell lines. Moreover, as antibody therapeutics address an increasing spectrum of indications, interest has increased in antibody engineering to improve affinity and biological activity. However, the cellular mechanisms that dictate expression and the relationships between antibody sequence and expression level remain poorly understood. Fundamental understanding of how mammalian cells handle high levels of transgene expression and of the relationship between sequence and expression are vital to the development of new antibodies and for increasing recombinant antibody titers. In this work, we analyzed a pair of mutants that vary by a single amino acid at Kabat position 49 (heavy-chain framework), resulting in differential transient and stable titers with no apparent loss of antigen affinity. Through analysis of mRNA, gene copy number, intracellular antibody content, and secreted antibody, we found that while translational/post-translational mechanisms are limiting in transient systems, it appears that the amount of available transgenic mRNA becomes the limiting event on stable integration of the recombinant genes. We also show that amino acid substitution at residue 49 results in production of a non-secreted HC variant and postulate that stable antibody expression is maintained at a level which prevents toxic accumulation of this HC-related protein. This study highlights the need for proper sequence engineering strategies when developing therapeutic antibodies and alludes to the early analysis of transient expression systems to identify the potential for aberrant stable expression behavior.  相似文献   

16.
The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as an interacting protein of PRL-3 using a yeast two-hybrid system. FKBP38 specifically binds to PRL-3 in vivo, and that the N-terminal region of FKBP38 is crucial for binding with PRL-3. FKBP38 overexpression reduces endogenous PRL-3 expression levels, whereas the depletion of FKBP38 by siRNA increases the level of PRL-3 protein. Moreover, FKBP38 promotes degradation of endogenous PRL-3 protein via protein-proteasome pathway. Furthermore, FKBP38 suppresses PRL-3-mediated p53 activity and cell proliferation. These results demonstrate that FKBP38 is a novel regulator of the oncogenic protein PRL-3 abundance and that alteration in the stability of PRL-3 can have a dramatic impact on cell proliferation. Thus, FKBP38 may play a critical role in tumorigenesis.  相似文献   

17.
The in vitro protein folding activity of an FKBP (FK506 binding protein, abbreviated to MTFK) from a thermophilic archaeon, Methanococcus thermolithotrophicus, was investigated. MTFK exhibited FK506 sensitive PPIase (peptidyl prolyl cis-trans isomerase) activity which accelerated the speed of ribonuclease T1 refolding, which is rate-limited by isomerization of two prolyl peptide bonds. In addition, MTFK suppressed the aggregation of folding intermediates and elevated the final yield of rhodanese refolding. We called this activity of MTFK the chaperone activity. The chaperone activity of MTFK was also inhibited by FK506. Alignment of the amino acid sequences of MTFK with human FKBP12 showed that MTFK has two insertion sequences, consisting of 13 and 44 amino acids, at the N- and C-termini, respectively [Furutani, M., Iida, T., Yamano, S., Kamino, K., and Maruyama, T. (1998) J. Bacteriol. 180, 388-394]. To study the relationship between chaperone and PPIase activities of MTFK, mutant MTFKs with deletions of these insertion sequences or with amino acid substitutions were created. Their PPIase and chaperone activities were measured using a synthetic oligopeptide and denatured rhodanese as the substrates, respectively. The far-UV circular dichroism spectra of the wild type and the mutants were also analyzed. The results suggested that (1) the PPIase activity did not correlate with chaperone activity, (2) both insertion sequences were required for MTFK to take a proper conformation, and (3) the insertion sequence (44 amino acids) in the C-terminus was important for the chaperone activity.  相似文献   

18.
The FK506‐binding protein (FKBP) family consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl‐prolyl cis–trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF‐hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP‐type domain as well as of the EF‐hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand‐containing FKBPs. The EF‐hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP‐type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF‐hand motifs.  相似文献   

19.
Removal of the core α1,6 fucose from the glycans in the Fc region of IgG1 antibodies has been demonstrated to improve antibody‐dependent cellular cytotoxicity (ADCC) activity. In order to produce afucosylated antibodies using transient transfection, a FUT8 knockout (FUT8KO) cell line was generated in a CHO host cell line using the zinc finger nuclease technology. Transient transfection of DNA into mammalian cells using the cationic polymer, polyethylenimine (PEI), is commonly used for rapid generation of recombinant proteins. FUT8KO cells evaluated in PEI transfections yielded lower titers than parental CHO WT cells. FACS and HPLC analyses revealed that the FUT8KO cells had lower cell surface heparan sulfate (HS) levels than CHO WT. Removal of cell surface HS resulted in reduced uptake of PEI‐transfected DNA (PEI:DNA) and lower transfection titers suggesting that PEI:DNA relies on HS for binding and cellular entry. The absence of cell surface HS did not severely impact transfections performed with cationic liposomes. We undertook two approaches to improve transient production of afucosylated antibodies. First, we evaluated transfection of FUT8KO cells with cationic liposomes, which were observed to be less dependent on HS levels for uptake. Transfection of FUT8KO cells using the cationic liposome, DMRIE‐C, produced similar titers to CHO WT in both shake flask and large‐scale 10 L bioreactors. The second approach was to engineer a cell line overexpressing exostosin‐1 (EXT1), an enzyme responsible for HS chain elongation, to increase HS content. EXT1‐FUT8KO and CHO WT cells produced comparable levels of antibody from PEI transfections. Biotechnol. Bioeng. 2010;106: 751–763. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Cultured mammalian cells, particularly Chinese hamster ovary (CHO) cells, are widely exploited as hosts for the production of recombinant proteins, but often yields are limiting. Such limitations may be due in part to the misfolding and subsequent degradation of the heterologous proteins. Consequently we have determined whether transiently co‐expressing yeast and/or mammalian chaperones that act to disaggregate proteins, in CHO cell lines, improve the levels of either a cytoplasmic (Fluc) or secreted (Gluc) form of luciferase or an immunoglobulin IgG4 molecule. Over‐expression of the yeast ‘protein disaggregase’ Hsp104 in a CHO cell line increased the levels of Fluc more significantly than for Gluc although levels were not further elevated by over‐expression of the yeast or mammalian Hsp70/40 chaperones. Over‐expression of TorsinA, a mammalian protein related in sequence to yeast Hsp104, but located in the ER, significantly increased the level of secreted Gluc from CHO cells by 2.5‐fold and to a lesser extent the secreted levels of a recombinant IgG4 molecule. These observations indicate that the over‐expression of yeast Hsp104 in mammalian cells can improve recombinant protein yield and that over‐expression of TorsinA in the ER can promote secretion of heterologous proteins from mammalian cells. Biotechnol. Bioeng. 2010; 105: 556–566. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号