首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of red‐emitting phosphors Sr‐Ba‐Mo‐W‐O:Eu,Sm and Sr‐Ba‐Mo‐W‐O:Eu have been synthesized by a sol–gel method. The effects of the chemical composition, concentrations of Sm3+ and Eu3+, the Sr2+/Ba2+ ratio, and the W6+/Mo6+ ratio on the luminescent properties were investigated. The as‐prepared phosphors were characterized by X‐ray diffraction and Raman spectra. Results showed that single phases of the two series were prepared. The compositions of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 had the strongest luminescent intensity. The excitation spectra of Sm3+, Eu3+ co‐doped phosphors were broader and the strongest peak moved to 404 nm when compared with that of Eu3+ single‐doped phosphors. The luminescent intensity of the Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 at 618 nm were 2.8 times greater than that of Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10. The luminescent intensity of Sr0.6Ba0.13Mo0.8 W0.2O4:Eu0.10Sm0.08 and Sr0.75Ba0.1Mo0.8 W0.2O4:Eu0.10 at 150 °C decreased to 56.8% and 50.3% of the initial value at room temperature, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

3.
This work reports the photoluminescence properties of Ca3Mg3(PO4)4:Sm3+ phosphors that were synthesized by the combustion method. The phase formation and morphology of the prepared phosphors were analysed by X‐ray diffraction studies and scanning electron microscopy. Ca3Mg3(PO4)4:Sm3+ phosphors give orange light emission when excited by near‐ultraviolet (NUV) and blue light. The photoluminescence characteristics of the as‐prepared phosphors were investigated and their emission spectra showed three peaks due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The mechanism responsible for the concentration quenching of luminescence was found to be an electric dipole–dipole interaction. The CIE chromaticity coordinates suggested that the prepared phosphors are potential candidates for orange light‐emitting diodes (LEDs).  相似文献   

4.
The antimonate compound La3SbO7 has high chemical stability, lattice stiffness and thermal stability. Orange–red‐emitting antimonate‐based phosphors La3SbO7:xSm3+ (x = 0.02, 0.05, 0.08, 0.10, 0.15, 0.20 and 0.25) were synthesized. The phase structure and photoluminescence properties of these phosphors were investigated. The emission spectrum obtained on excitation at 407 nm contained exclusively the characteristic emissions of Sm3+ at 568, 608, 654 and 716 nm, which correspond to the transitions from 4G5/2 to 6H5/2, 6H7/2, 6H9/2 and 6H11/2 of Sm3+, respectively. The strongest emission was located at 608 nm due to the 4G5/26H7/2 transition of Sm3+, generating bright orange–red light. The critical quenching concentration of Sm3+ in La3SbO7:Sm3+ phosphor was determined as 10% and the energy transfer between Sm3+ was found to be through an exchange interaction. The International Commission on Illumination chromaticity coordinates of the La3SbO7:0.10Sm3+ phosphors are located in the orange–red region. The La3SbO7:Sm3+ phosphors may be potentially used as red phosphors for white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A series of Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors was synthesized by a conventional solid‐state reaction method in air, and their structural and spectroscopic properties were investigated. The optimal doping concentration of Sm3+ in SrMoO4:Sm3+ phosphor is 5 mol%. Under excitation with 275 nm, in Sr1‐x‐yCayMoO4:xSm3+ (0 ≤ x ≤ 7 mol% and 0 ≤ y < 1) phosphors, the emission band of the host was found to overlap with the excitation bands peaking at ~500 nm of Sm3+ ion, and the energy transfer from MoO42? group to Sm3+ ion can also be observed. The International Commission on Illumination (CIE) chromaticity coordinates of Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation 275 nm varied systematically from an orange (0.4961, 0.3761) (y = 0) to a white color (0.33, 0.3442) (y = 0.95) with increasing calcium oxide (CaO) concentration. However, Sr0.95‐yCayMoO4:0.05Sm3+ phosphors with excitation at 404 nm only showed red emission and the energy transfer between MoO42? group to Sm3+ ion was not observed. The complex mechanisms of luminescence and energy transfer are discussed by energy level diagrams of MoO42? group and Sm3+ ion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Eu3+‐activated MAl(SO4)2Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X‐ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu3+‐doped SrAl(SO4)2Br and MgAl(SO4)2Br phosphors exhibited characteristic red emission coming from the 5D07F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu3+. The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4)2Br:Eu3+, (M = Mg, Sr) phosphors have potential application in near‐UV light‐emitting diodes as efficient red‐emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

8.
Red‐emitting Li2Sr1‐3x/2EuxSiO4 0≤x≤0.5) phosphors were synthesized at 900°C in air by a solid‐state reaction. The synthesized phosphors were characterized by X‐ray powder diffraction, photoluminescence (PL) excitation (PLE) and PL spectra. The results from the PLE spectra suggest that the strong 394 nm excitation peak associated with the 5L6 state of Eu3+ ions is of significance for near ultraviolet pumped white light‐emitting diodes and solid‐state lighting. It is also noted that the position of the charge transfer state of Eu3+ ions shifts towards the higher energy side (blue shift) by increasing the content of Eu3+ ions. The predominant emissions of Eu3+ ions under 394 nm excitation are observed at 580, 593, 614, 656 and 708 nm, which are attributed to the 5D07FJ (J = 0, 1, 2, 3 and 4), respectively. The PL results reveal that the optimal content of the red‐emitting Li2Sr1‐3x/2EuxSiO4 phosphors is x = 0.475. Simulation of the white light excited by 394 nm near ultraviolet light has also been carried out for its potential white light‐emitting diode applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

10.
We report the photoluminescence characterization of Dy3+‐activated NaM4(VO4)3 (M = Ca, Ba, Sr) phosphors prepared by a solid‐state method. The synthesis was confirmed by X‐ray diffraction (XRD) characterization and photoluminescence (PL) emission results showed sharp blue and yellow bands for NaM4(VO4)3 (M = Ca, Ba, Sr):Dy3+ phosphors at the excitation wavelength of 323 nm, which is near‐UV excitation. Thus, these phosphors could be applicable for near‐UV excited solid‐state lighting devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Sr3MgSi2O8:Ce3+, Dy3+ phosphors were prepared by a solid‐state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce3+ ions (403 nm) but also as a band due to Dy3+ ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce3+/Dy3+ co‐doped Sr3MgSi2O8 phosphors, and the co‐doping of Ce3+ could enhance the emission intensity of Dy3+ to a certain extent by transferring its energy to Dy3+. The Ce3+/Dy3+ energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94MgSi2O8:0.01Ce3+, 0.05Dy3+ phosphors, the fluorescence lifetime of Dy3+ (from 3.35 to 27.59 ns) is increased whereas that of Ce3+ is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce3+ to Dy3+ energy transfer. The varied emitted color of Sr3MgSi2O8:Ce3+, Dy3+ phosphors from blue to white were achieved by altering the concentration ratio of Ce3+ and Dy3+. These results indicate Sr3MgSi2O8:Ce3+, Dy3+ may be as a candidate phosphor for white light‐emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The present study investigates the impact of the ligand environment on the luminescence and thermometric behavior of Sm3+ doped A3(PO4)2 (A = Sr, Ca) phosphors prepared by combustion synthesis. The structural and luminescent properties of Sm3+ ions in the phosphate lattices were investigated using powder X-ray diffraction (PXRD) and photoluminescence (PL) techniques. PXRD results of the synthesized phosphors exhibit the expected phases that are in agreement with their respective standards. Fourier-transform infrared (FTIR) spectroscopy confirms the presence of PO4 vibrational bands. Upon excitation with near ultraviolet light, the PL studies indicated that Sr3(PO4)2:Sm3+ phosphors exhibit a yellow light emission, whereas Ca3(PO4)2:Sm3+ phosphors exhibit an emission of orange light. The PL emission results are in accordance with the CIE coordinates, with the Sr3(PO4)2:Sm3+ phosphors showing coordinates of (0.56, 0.44), and the Ca3(PO4)2:Sm3+ phosphors displaying coordinates of (0.60, 0.40). Thermal analysis shows improved stability of Ca3(PO4)2:Sm3+ based on lower weight reduction in thermogravimetric analysis. The effect of temperature on the luminescence properties of the phosphor has been examined upon a 405 nm excitation. By using the fluorescence intensity ratio (FIR) method, the temperature responses of the emission ratios from the Sm3+: the 4F3/26H5/2 transition to the 4G5/26H7/2 and 4F3/26H5/2 transition to the 4G5/26H9/2 emissions are characterized. The Ca3(PO4)2:Sm3+ phosphors are more sensitive as compared with the Sr3(PO4)2:Sm3+ phosphors. The earlier research findings strongly indicate that these phosphors hold great promise as ideal candidates for applications in non-invasive optical thermometry and solid-state lighting devices.  相似文献   

14.
Samarium ion (Sm3+)-doped alkali zinc alumino borosilicate (AZABS) glass was synthesized via quick melt quench technique. Various spectroscopic studies like optical absorption, photoluminescence (PL) emission, PL excitation, temperature-dependent PL and PL decay kinetics were performed on the as prepared glass system. Under 402 nm excitation, three sharp bands at wavelengths 563, 599 and 645 nm corresponding to transitions 4G5/26H5/2, 6H7/2 and 6H9/2, respectively, can be seen in the PL emission spectra. The 0.25 mol% Sm3+ glass has the highest intensity for these emissions. The lanthanide interaction in the glass matrix is dipole–dipole in nature as was proven from Dexter's analysis. The direct bandgap of 0.25 mol% Sm3+-doped AZABS glass was calculated to be 2.88 eV. The lifetimes of the as prepared glass range from 1.93 ms for the lowest concentration of Sm3+ to 0.75 ms for the highest. From temperature dependent PL studies, the activation energy for 0.25 mol% Sm3+-doped AZABS glass was found to be 0.19 eV which shows high thermal stability of this glass. We propose to utilize these Sm3+-doped AZABS glasses for white-light emitting diodes (w-LEDs) and solid-state lighting (SSL) applications.  相似文献   

15.
A series of Eu3+‐activated NaLi2PO4 novel phosphors was synthesized by the solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by near‐UV (370–410 nm) light. The emission spectra exhibit strong reddish‐orange performance, which is due to the 5D07FJ transitions of Eu3+ ions. The orange emission from transition 5D07F1 is dominant over that of 5D07F2. The concentration quenching of Eu3+ was observed in NaLi2PO4:Eu3+ when the Eu concentration was at 1 mol%. The impact of doping Eu3+ and photoluminescence properties were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A series of Sr2ZnWO6 phosphors co‐doped with Eu3+, Bi3+ and Li+ were prepared using the Pechini method. The samples were tested using X‐ray diffraction and luminescence spectroscopy. The results show that the samples can be effectively excited by near‐ultraviolet (UV) and UV light. The introduction of Bi3+ and Li+ significantly enhances the fluorescence emission of Sr2ZnWO6:Eu3+ and changes the light emitted by the phosphors from bluish‐green to white. When excited at 371 nm, Sr2–x–zZn1–yWO6:xEu3+,yBi3+,zLi+ (x = 0.05, y = 0.05, z = 0.05, 0.1 and 0.15) samples emit high‐performance white light. Intense red–orange emission is also observed when excited by UV light. The obtained phosphor is a potential white‐emitting phosphor that could meet the needs of excitation sources with near‐UV chips. In addition, this phosphor might have promising application as a red–orange emitting phosphor for white light‐emitting diodes based on UV light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In the recent few years, Eu2+- and Mn4+-activated phosphors are widely used as potential colour converters for indoor plant cultivation lighting application due to their marvellous luminescence characteristics as well as low cost. In this investigation, we synthesized novel red colour-emitting Ca(2−x)Mg2(SO4)3:xmol% Eu2+ (x = 0–1.0 mol%) phosphors via a solid-state reaction method in a reducing atmosphere. The photoluminescence (PL) excitation spectra of synthesized phosphors exhibited a broad excitation band with three excitation bands peaking at 349 nm, 494 nm, and 554 nm. Under these excitations, emission spectra exhibited a broad band in the red colour region at ~634 nm. The PL emission intensity was measured for different concentrations of Eu2+. The maximum Eu2+ doping concentration in the Ca2Mg2(SO4)3 host was observed for 0.5 mol%. According to Dexter theory, it was determined that dipole–dipole interaction was responsible for the concentration quenching. The luminous red colour emission of the sample was confirmed using Commission international de l'eclairage colour coordinates. The results of PL excitation and emission spectra of the prepared phosphors were well matched with excitation and emission wavelengths of phytochrome PR. Therefore, from the entire investigation and obtained results it was concluded that the synthesized Ca0.995Mg2(SO4)3:0.5mol%Eu2+ phosphor has huge potential for plant cultivation application.  相似文献   

18.
Potassium fluoro‐phosphate (KFP) glass singly doped with different concentrations of europium (Eu3+) or samarium (Sm3+) or co‐doped (Sm3+/Eu3+) was prepared, and their luminescence spectra were investigated. The phase composition of the product was verified by X‐ray diffraction analysis. Optical transition properties of Eu3+ in the studied potassium phosphate glass were evaluated in the framework of the Judd–Ofelt theory. The radiative transition rates (AR), fluorescence branching ratios (β), stimulated emission cross‐sections (σe) and lifetimes (τexp) for certain transitions or levels were evaluated. Red emission of Eu3+ was exhibited mainly by the 5D07F2 transition located at 612 nm. Concentration quenching and energy transfer were observed from fluorescence spectra and decay curves, respectively. It was found that the lifetimes of the 5D0 level increased with increase in concentration and then decreased. By co‐doping with Sm3+, energy transfer from Sm3+ to Eu3+ occurred and contributed to the enhancement in emission intensity. Intense orange‐red light emission was obtained upon sensitizing with Sm3+ in KFP glass. This approach shows significant promise for use in reddish‐orange lighting applications. The optimized properties of the Sm3+/Eu3+ co‐doped potassium phosphate glass might be promising for optical materials.  相似文献   

19.
Incorporating the Gd3+ rare earth ion in the LiCaBO3 host lattice resulted in narrow‐band UV‐B emission peaking at 315 nm, with excitation at 274 nm. The LiCaBO3:Gd3+ phosphor was synthesized via the solid‐state diffusion method. The structural, morphological and luminescence properties of this phosphor were characterized by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. Electron paramagnetic resonance (EPR) characterization of the as‐prepared phosphors is also reported here. XRD studies confirmed the crystal formation and phase purity of the prepared phosphors. A series of different dopant concentrations was synthesized and the concentration‐quenching effect was studied. Critical energy transfer distance between activator ions was determined and the mechanism governing the concentration quenching is also reported in this paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Sm3+ ions doped strontium lithium lead borate glasses (SLLB:Sm) were prepared using a conventional melt‐quenching technique. The glasses were analyzed using X‐ray diffractometry and Fourier transform infrared spectroscopy, optical absorption, fluorescence spectral analysis, and fluorescence lifetime decay. The Judd–Ofelt (J–O) parameters and radiative parameters of the SLLB:Sm10 glass (1.0 mol% Sm3+ ion‐doped glass) were calculated using J–O theory. From the emission spectra, among all the synthesized glass, SLLB:Sm10 glass had the highest emission intensity for 4G5/26H11/2 transition (610 nm). Emission parameters, such as stimulated emission cross‐section and optical gain bandwidth, were calculated. For all concentrations of Sm3+ ions, the decay profile showed an exponential nature and decreased when the Sm3+ ion concentration was increased due to a concentration quenching effect. This result suggests that the synthesized SLLB:Sm10 glass could be used for application in high‐density optical memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号