首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather.  相似文献   

2.
《Journal of morphology》2017,278(7):936-947
Wing tip slots are a distinct morphological trait broadly expressed across the avian clade, but are generally perceived to be unique to soaring raptors. These slots are the result of emarginations on the distal leading and trailing edges of primary feathers, and allow the feathers to behave as individual airfoils. Research suggests these emarginate feathers are an adaptation to increase glide efficiency by mitigating induced drag in a manner similar to aircraft winglets. If so, we might expect birds known for gliding and soaring to exhibit emarginate feather morphology; however, that is not always the case. Here, we explore emargination across the avian clade, and examine associations between emargination and ecological and morphological variables. Pelagic birds exhibit pointed, high‐aspect ratio wings without slots, whereas soaring terrestrial birds exhibit prominent wing‐tip slots. Thus, we formed four hypotheses: (1) Emargination is segregated according to habitat (terrestrial, coastal/freshwater, pelagic). (2) Emargination is positively correlated with mass. (3) Emargination varies inversely with aspect ratio and directly with wing loading and disc loading. (4) Emargination varies according to flight style, foraging style, and diet. We found that emargination falls along a continuum that varies with habitat: Pelagic species tend to have zero emargination, coastal/freshwater birds have some emargination, and terrestrial species have a high degree of emargination. Among terrestrial and coastal/freshwater species, the degree of emargination is positively correlated with mass. We infer this may be the result of selection to mitigate induced power requirements during slow flight that otherwise scale adversely with increasing body size. Since induced power output is greatest during slow flight, we hypothesize that emargination may be an adaptation to assist vertical take‐off and landing rather than glide efficiency as previously hypothesized.  相似文献   

3.
The impact of feather‐degrading bacilli on feathers depends on the presence or absence of melanin. In vitro studies have demonstrated that unmelanized (white) feathers are more degradable by bacteria than melanized (dark) ones. However, no previous study has looked at the possible effect of feather‐degrading bacilli on the occurrence of patterns of unmelanized patches on otherwise melanized feathers. The pied flycatcher Ficedula hypoleuca Pallas, 1764 is a sexually dimorphic passerine with white wing bands consisting of unmelanized patches on dark flight feathers. These patches are considered to be a sexually selected trait in Ficedula flycatchers, especially in males, where the patches are more conspicuous (larger and possibly whiter) than in females. Using in vitro tests of feather bacterial degradation, we compared the degradability of unmelanized and melanized areas of the same feather for 127 primaries collected from the same number of individuals in a population breeding in central Spain (58 males and 69 females). In addition, we also looked for sex differences in feather degradability. Based on honest signalling theory and on the fact that there is stronger sexual selection for males to signal feather quality than in females, we predicted that unmelanized areas should be more degradable by bacteria than melanized ones within the same feather, and that these unmelanized areas should also be more degradable in males than in females. We confirmed both predictions. Microstructural differences between cross‐section dimensions of unmelanized and melanized barbs, but not differences in the density of barbs within unmelanized and melanized areas of feathers in males and females, could partly explain differences in degradability. This is the first study to show differences in bacterial degradability among markings on the same feather and among unmelanized feather patches between males and females as predicted by sexual selection theory. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 409–419.  相似文献   

4.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

5.
Feather holes are small (0.5–1?mm in diameter) deformities that appear on the vanes of flight feathers. Such deformities were found in many bird species, including galliforms and passerines. Holey flight feathers may be more permeable to air, which could have a negative effect on their ability to generate aerodynamic forces. However, to date the effects of feather holes on flight performance in birds remained unclear. In this study we investigated the relationship between the number of feather holes occurring in the wing or tail feathers and short term flight performance traits – aerial manoeuvrability, maximum velocity and maximum acceleration – in barns swallows, which are long distance migrating aerial foragers. We measured short-term flight performance of barn swallows in a standardized manner in flight tunnels. We found that acceleration and velocity were significantly negatively associated with the number of holes in the wing flight feathers, but not with those in the tail feathers. In the case of acceleration the negative relationship was sex specific – while acceleration significantly decreased with the number of feather holes in females, there was no such significant association in males. Manoeuvrability was not significantly associated with the number of feather holes. These results are consistent with the hypothesis that feather holes are costly in terms of impaired flight. We discuss alternative scenarios that could explain the observed relationships. We also suggest directions for future studies that could investigate the exact mechanism behind the negative association between the number of feather holes and flight characteristics.  相似文献   

6.
The "condition-specific competition hypothesis" proposes that coexistence of 2 species is possible when spatial or temporal variations in environmental conditions exist and each species responds differently to those conditions. The distribution of different species of feather mites on their hosts is known to be affected by intrinsic host factors such as structure of feathers and friction among feathers during flight, but there is also evidence that external factors such as humidity and temperature can affect mite distribution. Some feather mites have the capacity to move through the plumage rather rapidly, and within-host variation in intensity of sunlight could be one of the cues involved in these active displacements. We analyzed both the within- and between-feather spatial distribution of 2 mite species, Trouessartia bifurcata and Dolichodectes edwardsi , that coexist in flight feathers of the moustached warbler Acrocephalus melanopogon. A complex spatial segregation between the 2 species was observed at 3 spatial levels, i.e., "feather surfaces," "between feathers," and "within feathers." Despite certain overlapping distribution among feathers, T. bifurcata dominated proximal and medial regions on dorsal faces, while D. edwardsi preferred disto-ventral feather areas. An experiment to check the behavioral response of T. bifurcata to sunlight showed that mites responded to light exposure by approaching the feather bases and even leaving its dorsal face. Spatial heterogeneity across the 3 analyzed levels, together with response to light and other particular species adaptations, may have played a role in the coexistence and segregation of feather mites competing for space and food in passerine birds.  相似文献   

7.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

8.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

9.
Progress on the evolutionary origin and diversification of feathers has been hampered by conceptual problems and by the lack of plesiomorphic feather fossils. Recently, both of these limitations have been overcome by the proposal of the developmental theory of the origin of feathers, and the discovery of primitive feather fossils on nonavian theropod dinosaurs. The conceptual problems of previous theories of the origin of feathers are reviewed, and the alternative developmental theory is presented and discussed. The developmental theory proposes that feathers evolved through a series of evolutionary novelties in developmental mechanisms of the follicle and feather germ. The discovery of primitive and derived fossil feathers on a diversity of coelurosaurian theropod dinosaurs documents that feathers evolved and diversified in nonavian theropods before the origin of birds and before the origin of flight. The morphologies of these primitive feathers are congruent with the predictions of the developmental theory. Alternatives to the theropod origin of feathers are critique and rejected. Hypotheses for the initial function of feathers are reviewed. The aerodynamic theory of feather origins is falsified, but many other functions remain developmentally and phylogenetically plausible. Whatever their function, feathers evolved by selection for a follicle that would grow an emergent tubular appendage. Feathers are inherently tubular structures. The homology of feathers and scales is weakly supported. Feathers are composed of a suite of evolutionary novelties that evolved by the duplication, hierarchical organization, interaction, dissociation, and differentiation of morphological modules. The unique capacity for modular subdivision of the tubular feather follicle and germ has fostered the evolution of numerous innovations that characterize feathers. The evolution of feather keratin and the molecular basis of feather development are also discussed.  相似文献   

10.
The primary feathers of birds are subject to cyclical forces in flight causing their shafts (rachises) to bend. The amount the feathers deflect during flight is dependent upon the flexural stiffness of the rachises. By quantifying scaling relationships between body mass and feather linear dimensions in a large data set of living birds, we show that both feather length and feather diameter scale much closer to predictions for geometric similarity than they do to elastic similarity. Scaling allometry also indicates that the primary feathers of larger birds are relatively shorter and their rachises relatively narrower, compared to those of smaller birds. Two-point bending tests indicated that larger birds have more flexible feathers than smaller species. Discriminant functional analyses (DFA) showed that body mass, primary feather length and rachis diameter can be used to differentiate between different magnitudes of feather bending stiffness, with primary feather length explaining 63% of variance in rachis stiffness. Adding fossil measurement data to our DFA showed that Archaeopteryx and Confuciusornis do not overlap with extant birds. This strongly suggests that the bending stiffness of their primary feathers was different to extant birds and provides further evidence for distinctive flight styles and likely limited flight ability in Archaeopteryx and Confuciusornis.  相似文献   

11.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

12.
Feathers are the most complex epidermal derivatives among vertebrates. The present review deals with the origin of feathers from archosaurian reptiles, the cellular and molecular aspects of feather morphogenesis, and focus on the synthesis of keratins and associated proteins. Feathers consist of different proteins among which exists a specialized group of small proteins called beta-keratins. Genes encoding these proteins in the chick genome are distributed in different chromosomes, and most genes encode for feather keratins. The latter are here recognized as proteins associated with the keratins of intermediate filaments, and functionally correspond to keratin-associated proteins of hairs, nails and horns in mammals. These small proteins possess unique properties, including resistance and scarce elasticity, and were inherited and modified in feathers from ancestral proteins present in the scales of archosaurian progenitors of birds. The proteins share a common structural motif, the core box, which was present in the proteins of the reptilian ancestors of birds. The core box allows the formation of filaments with a different molecular mechanism of polymerization from that of alpha-keratins. Feathers evolved after the establishment of a special morphogenetic mechanism gave rise to barb ridges. During development, the epidermal layers of feathers fold to produce barb ridges that produce the ramified structure of feathers. Among barb ridge cells, those of barb and barbules initially accumulate small amounts of alpha-keratins that are rapidly replaced by a small protein indicated as “feather keratin”. This 10 kDa protein becomes the predominant form of corneous material of feathers. The main characteristics of feather keratins, their gene organization and biosynthesis are similar to those of their reptilian ancestors. Feather keratins allow elongation of feather cells among supportive cells that later degenerate and leave the ramified microstructure of barbs. In downfeathers, barbs are initially independent and form plumulaceous feathers that rest inside a follicle. Stem cells remain in the follicle and are responsible for the regeneration of pennaceous feathers. New barb ridges are produced and they merge to produce a rachis and a flat vane. The modulation of the growth pattern of barb ridges and their fusion into a rachis give rise to a broad variety of feather types, including asymmetric feathers for flight. Feather morphogenesis suggests possible stages for feather evolution and diversification from hair-like outgrowths of the skin found in fossils of pro-avian archosaurians.  相似文献   

13.
Fault bars are translucent bands produced by stressful events during feather formation. They weaken feathers and increase their probability of breakage, and thus could compromise bird fitness by lowering flight performance. It has been recently suggested ('fault bar allocation hypothesis') that birds could have evolved adaptive mechanisms for reducing fault bar load on the feathers with the highest function during flight. We tested this hypothesis by studying first-year individuals of the long-distance migratory, aerial forager barn swallow Hirundo rustica . We predicted that fault bars should be less abundant on the outermost wing and tail feathers, but more frequent on the tail than on the outermost wing feathers. Accordingly, we found that fault bars occurred more often in tertials than in primaries or secondaries. Tail feathers had fewer fault bars than tertials, but more than primaries. Within the tail, the distribution pattern of fault bars was W-shaped, with the highest fault bar load occurring on the streamers and on the two central feathers. Because streamers are the most important tail feathers for flight performance, this finding seems to contradict the 'fault bar allocation hypothesis'. However, flight performance is much less sensitive to changes in the shape of the tail than of the wings, which could explain why evolutionary forces have not counteracted the increase of fault bars associated with feather elongation during the recent evolution of streamers in the tail of hirundines.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 455–461.  相似文献   

14.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

15.
We investigated how exogenous and endogenous glucocorticoids affect feather replacement in European starlings (Sturnus vulgaris) after approximately 56% of flight feathers were removed. We hypothesized that corticosterone would retard feather regrowth and decrease feather quality. After feather regrowth began, birds were treated with exogenous corticosterone or sham implants, or endogenous corticosterone by applying psychological or physical (food restriction) stressors. Exogenous corticosterone had no impact on feather length and vane area, but rectrices were lighter than controls. Exogenous corticosterone also decreased inter-barb distance for all feathers and increased barbule number for secondaries and rectrices. Although exogenous corticosterone had no affect on rachis tensile strength and stiffness, barbicel hooking strength was reduced. Finally, exogenous corticosterone did not alter the ability of Bacillus licheniformis to degrade feathers or affect the number of feathers that failed to regrow. In contrast, endogenous corticosterone via food restriction resulted in greater inter-barb distances in primaries and secondaries, and acute and chronic stress resulted in greater inter-barb distances in rectrices. Food-restricted birds had significantly fewer barbules in primaries than chronic stress birds and weaker feathers compared to controls. We conclude that, although exogenous and endogenous corticosterone had slightly different effects, some flight feathers grown in the presence of high circulating corticosterone are lighter, potentially weaker, and with altered feather micro-structure.  相似文献   

16.
JAN DYCK 《Zoologica scripta》1985,14(2):137-154
Existing hypotheses on the evolution of feathers are reviewed with the assumptions that feather evolved from reptilian scales and that pennaceous feathers evolved before downy feathers. Observations with a scanning electron microscope demonstrate that basic to the structure of pennaceous feathers is the lamelliform structure of barbules, the planes of which are oriented at right angles to the plane of the feather vane. Thus the structure of the vane is more open than generally realized. The airtight vane of flight feathers is assumed a later specialization. Most of the existing hypotheses assume that the feather acts as a relatively solid barrier between the skin of the bird and the exterior and they are therefore not in agreement with the actual structure of feathers. A hypothesis is needed which explains the adaptive value of a pennaceous feather being porous. The hypothesis is put foward that feathers evolved due to selection for a water-repellent integument. For purely physical reasons a porous surface repels water drops more strongly than does a solid surface of the same material. Physicists have pointed out that the structure of feathers conforms closely with the theoretical requirements for water-repellency. Possibly feathers started to evolve on reptiles living at the seashore, where the main advantage of increased water-repellency was to reduce cooling from evaporation of water off a wet integument.  相似文献   

17.
18.
Feather pecking is a problem in commercial laying hens, particularly in loose-housing systems, where many hens can be affected by only a few feather peckers. In addition, feather pecking can become an even larger problem if it spreads throughout the flock. There are several possible ways that feather pecking may spread. The simplest way is that one hen may damage the feathers of a hen, and another hen may find the damaged feathers an attractive pecking target. The aim of this experiment was to determine if damaged feathers were feather-pecked more than undamaged feathers on the same body area, and to determine whether some types of feather-body area manipulations were preferred over others as pecking stimuli. Manipulations involved damaging the feathers on the rump, tail or belly of different hens, with two or three levels of severity of manipulation at each body area. Sixteen groups of 11 Lohmann Brown hens between 26 and 28 weeks were observed with the recipient, the feather pecker and the body area that was pecked all being recorded. The feather pecks were classified separately as either gentle or severe. Damaged feathers received significantly more severe feather pecks than undamaged feathers. There were also more gentle feather pecks to damaged feathers, although this did not reach statistical significance. The feather-body area manipulations that received the greatest number of severe feather pecks were the tail feathers when they were cut very short, the rump feathers when they were trimmed, and the rump when feathers were removed. These results support the suggestion that feather pecking does indeed spread through flocks by damaged feathers becoming an attractive target for feather-pecking behaviour. An unexpected result of performing the feather manipulations was an outbreak of cannibalism in half of the experimental groups. Even though there was no visible damage to the skin of the hens after having the feathers manipulated, 13 of the 16 attacked hens were wounded on the part of the body where the feathers had been damaged in some way.  相似文献   

19.
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.  相似文献   

20.
Unlike smaller raptors, which can readily use flapping flight, large raptors are mainly restricted to soaring flight due to energetic constraints. Soaring comprises of two main strategies: thermal and orographic soaring. These soaring strategies are driven by discrete uplift sources determined by the underlying topography and meteorological conditions in an area. High‐resolution GPS tracking of raptor flight allows the identification of these flight strategies and interpretation of the spatiotemporal occurrence of thermal and orographic soaring. In this study, we develop methods to identify soaring flight behaviors from high‐resolution GPS tracking data of Verreaux’s eagle Aquila verreauxii and analyze these data to understand the conditions that promote the use of thermal and orographic soaring. We use these findings to predict the use of soaring flight both spatially (across the landscape) and temporally (throughout the year) in two topographically contrasting regions in South Africa. We found that topography is important in determining the occurrence of soaring flight and that thermal soaring occurs in relatively flat areas which are likely to have good thermal uplift availability. The predicted use of orographic soaring was predominately determined by terrain slope. Contrary to our expectations, the topography and meteorology of eagle territories in the Sandveld promoted the use of soaring flight to a greater extent than in territories in the more mountainous Cederberg region. Spatiotemporal mapping of predicted flight behaviors can broaden our understanding of how large raptors like the Verreaux’s eagle use their habitat and how that links to energetics (as the preferential use of areas that maximize net energy gain is expected), reproductive success, and ultimately population dynamics. Understanding the fine‐scale landscape use and environmental drivers of raptor flight can also help to predict and mitigate potential detrimental effects of anthropogenic developments, such as mortality via collision with wind turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号