首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Process development in up‐ and downstream processing requires enhanced, non‐time‐consuming, and non‐expensive monitoring techniques to track product purity, for example, the level of endotoxins, viral particles, and host cell proteins (HCPs). Currently, HCP amounts are measured by laborious and expensive HCP‐enzyme‐linked immunosorbent assay (ELISA) assays best suited for measuring HCP amounts in the low concentration regime. The measurement of higher HCP amounts using this method requires dilution steps, adding dilution errors to the measurement. In this work we evaluated the suitability of attenuated total reflection spectroscopy for HCP quantification in process development, using clarified cell culture fluid from monoclonal antibody producing Chinese hamster ovary‐cells after treatment with different polyelectrolytes for semi‐selective clarification. Forty undiluted samples were chosen for multivariate data analysis in the middle infrared range and predicted HCP‐values were in good agreement with results obtained by an ELISA‐assay, suggesting the suitability of this new method for HCP‐quantification. As this method is able to quantify HCP titers ranging from approximately at least 20,000–200,000 ng mL?1, it is suitable especially for monitoring of process development steps with higher HCP concentrations, omitting dilution errors associated with ELISA assays. Biotechnol. Bioeng. 2013; 110: 252–259. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
3.
Bioprocesses for therapeutic protein production typically require significant resources to be invested in their development. Underlying these efforts are analytical methods, which must be fit for the purpose of monitoring product and contaminants in the process. It is highly desirable, especially in early‐phase development when material and established analytical methods are limiting, to be able to determine what happens to the product and impurities at each process step with small sample volumes in a rapid and readily performed manner. This study evaluates the utility of surface‐enhanced laser desorption ionization mass spectroscopy (SELDI‐MS), known for its rapid analysis and minimal sample volumes, as an analytical process development tool. In‐process samples from an E. coli process for apolipoprotein A‐IM (ApoA‐IM) manufacture were used along with traditional analytical methods such as HPLC to check the SELDI‐MS results. ApoA‐IM is a naturally occurring variant of ApoA‐I that appears to confer protection against cardiovascular disease to those that carry the mutated gene. The results show that, unlike many other analytical methods, SELDI‐MS can handle early process samples that contain complex mixtures of biological molecules with limited sample pretreatment and thereby provide meaningful process‐relevant information. At present, this technique seems most suited to early‐phase development particularly when methods for traditional analytical approaches are still being established. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

4.
Tangential flow microfiltration (MF) is a cost‐effective and robust bioprocess separation technique, but successful full scale implementation is hindered by the empirical, trial‐and‐error nature of scale‐up. We present an integrated approach leveraging at‐line process analytical technology (PAT) and mass balance based modeling to de‐risk MF scale‐up. Chromatography‐based PAT was employed to improve the consistency of an MF step that had been a bottleneck in the process used to manufacture a therapeutic protein. A 10‐min reverse phase ultra high performance liquid chromatography (RP‐UPLC) assay was developed to provide at‐line monitoring of protein concentration. The method was successfully validated and method performance was comparable to previously validated methods. The PAT tool revealed areas of divergence from a mass balance‐based model, highlighting specific opportunities for process improvement. Adjustment of appropriate process controls led to improved operability and significantly increased yield, providing a successful example of PAT deployment in the downstream purification of a therapeutic protein. The general approach presented here should be broadly applicable to reduce risk during scale‐up of filtration processes and should be suitable for feed‐forward and feed‐back process control. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:108–115, 2016  相似文献   

5.
We report on the implementation of proton transfer reaction‐mass spectrometry (PTR‐MS) technology for on‐line monitoring of volatile organic compounds (VOCs) in the off‐gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR‐MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in‐process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR‐MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR‐MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR‐MS was successfully implemented as a powerful bioprocess‐monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control. Biotechnol. Bioeng. 2012; 109: 3059–3069. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
This study was performed in order to evaluate a new LED‐based 2D‐fluorescence spectrometer for in‐line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10‐L fed‐batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D‐fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed‐batch process was used for model validation and prediction. An almost continuous in‐line bioprocess monitoring was realized because 2D‐fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D‐fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D‐fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures.  相似文献   

7.
The production of norovirus virus‐like particles (NoV VLPs) displaying NY‐ESO‐1 cancer testis antigen in Pichia pastoris BG11 Mut+ has been enhanced through feed‐strategy optimization using a near‐infrared bioprocess monitor (RTBio® Bioprocess Monitor, ASL Analytical, Inc.), capable of monitoring and controlling the concentrations of glycerol and methanol in real‐time. The production of NoV VLPs displaying NY‐ESO‐1 in P. pastoris has potential as a novel cancer vaccine platform. Optimization of the growth conditions resulted in an almost two‐fold increase in the expression levels in the fermentation supernatant of P. pastoris as compared to the starting conditions. We investigated the effect of methanol concentration, batch phase time, and batch to induction transition on NoV VLP‐NY‐ESO‐1 production. The optimized process included a glycerol transition phase during the first 2 h of induction and a methanol concentration set point of 4 g L?1 during induction. Utilizing the bioprocess monitor to control the glycerol and methanol concentrations during induction resulted in a maximum NoV VP1‐NY‐ESO‐1 yield of 0.85 g L?1. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:518–526, 2016  相似文献   

8.
Near‐infrared spectroscopy is considered to be one of the most promising spectroscopic techniques for upstream bioprocess monitoring and control. Traditionally the nature of near‐infrared spectroscopy has demanded multivariate calibration models to relate spectral variance to analyte concentrations. The resulting analytical measurements have proven unreliable for the measurement of metabolic substrates for bioprocess batches performed outside the calibration process. This paper presents results of an innovative near‐infrared spectroscopic monitor designed to follow the concentrations of glycerol and methanol, as well as biomass, in real time and continuously during the production of a monoclonal antibody by a Pichia pastoris high cell density process. A solid state instrumental design overcomes the ruggedness limitations of conventional interferometer‐based spectrometers. Accurate monitoring of glycerol, methanol, and biomass is demonstrated over 274 days postcalibration. In addition, the first example of feedback control to maintain constant methanol concentrations, as low as 1 g/L, is presented. Postcalibration measurements over a 9‐month period illustrate a level of reliability and robustness that promises its adoption for online bioprocess monitoring throughout product development, from early laboratory research and development to pilot and manufacturing scale operation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:749–759, 2014  相似文献   

9.
Affinity chromatography (AC) has been used in large‐scale bioprocessing for almost 40 years and is considered the preferred method for primary capture in downstream processing of various types of biopharmaceuticals. The objective of this mini‐review is to provide an overview of a) the history of bioprocess AC, b) the current state of platform processes based on affinity capture steps, c) the maturing field of custom developed bioprocess affinity resins, d) the advantages of affinity capture‐based downstream processing in comparison to other forms of chromatography, and e) the future direction for bioprocess scale AC. The use of AC can result in economic advantages by enabling the standardization of process development and the manufacturing processes and the use of continuous operations in flexible multiproduct production suites. These concepts are discussed from a growing field of custom affinity bioprocess resin perspective. The custom affinity resins not only address the need for a capture resin for non‐platformable processes, but also can be employed in polishing applications, where they are used to define and control drug substance composition by separating specific product variants from the desired product form.  相似文献   

10.
Raman‐based multivariate calibration models have been developed for real‐time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO‐based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1004–1013, 2015  相似文献   

11.
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non‐antibody biologics. Multi‐step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single‐step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi‐step purification trains. These models empower process development decision‐making with drug substance‐equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:708–717, 2014  相似文献   

12.
Information on protein–protein interactions (PPIs) is of critical importance for studying complex biological systems and developing therapeutic strategies. Here, we present a double‐readout bioluminescence‐based two‐hybrid technology, termed LuTHy, which provides two quantitative scores in one experimental procedure when testing binary interactions. PPIs are first monitored in cells by quantification of bioluminescence resonance energy transfer (BRET) and, following cell lysis, are again quantitatively assessed by luminescence‐based co‐precipitation (LuC). The double‐readout procedure detects interactions with higher sensitivity than traditional single‐readout methods and is broadly applicable, for example, for detecting the effects of small molecules or disease‐causing mutations on PPIs. Applying LuTHy in a focused screen, we identified 42 interactions for the presynaptic chaperone CSPα, causative to adult‐onset neuronal ceroid lipofuscinosis (ANCL), a progressive neurodegenerative disease. Nearly 50% of PPIs were found to be affected when studying the effect of the disease‐causing missense mutations L115R and ?L116 in CSPα with LuTHy. Our study presents a robust, sensitive research tool with high utility for investigating the molecular mechanisms by which disease‐associated mutations impair protein activity in biological systems.  相似文献   

13.
High‐throughput screening (HTS) technology is gaining increasing importance in downstream process development of cell‐based products. The development of such HTS‐technologies, however, is highly dependent on the availability of robust, accurate, and sensitive high‐throughput cell quantification methods. In this article, we compare state‐of‐the‐art cell quantification methods with focus on their applicability in HTS‐platforms for downstream processing of cell‐based products. Sensitivity, dynamic range, and precision were evaluated for four methods that differ in their respective mechanism. In addition, we evaluated the performance of these methods over a range of buffer compositions, medium densities, and viscosities, representing conditions found in many downstream processing methods. We found that CellTiter‐Glo? and flow cytometry are excellent tools for high‐throughput cell quantification. Both methods have broad working ranges (3–4 log) and performed well over a wide range of buffer compositions. In comparison, CyQuant® Direct and CellTracker? had smaller working ranges and were more sensitive to changes in buffer composition. For fast and sensitive quantification of a single cell type, CellTiter‐Glo? performed best, while for more complex cell mixtures flow cytometry is the method of choice. Our analysis will facilitate the selection of the most suitable method for a specific application and provides a benchmark for future HTS development in downstream processing of cell‐based products.  相似文献   

14.
In bioprocesses, specific process responses such as the biomass cannot typically be measured directly on‐line, since analytical sampling is associated with unavoidable time delays. Accessing those responses in real‐time is essential for Quality by Design and process analytical technology concepts. Soft sensors overcome these limitations by indirectly measuring the variables of interest using a previously derived model and actual process data in real time. In this study, a biomass soft sensor based on 2D‐fluorescence data and process data, was developed for a comprehensive study with a 20‐L experimental design, for Escherichia coli fed‐batch cultivations. A multivariate adaptive regression splines algorithm was applied to 2D‐fluorescence spectra and process data, to estimate the biomass concentration at any time during the process. Prediction errors of 4.9% (0.99 g/L) for validation and 3.8% (0.69 g/L) for new data (external validation), were obtained. Using principal component and parallel factor analyses on the 2D‐fluorescence data, two potential chemical compounds were identified and directly linked to cell metabolism. The same wavelength pairs were also important predictors for the regression‐model performance. Overall, the proposed soft sensor is a valuable tool for monitoring the process performance on‐line, enabling Quality by Design.  相似文献   

15.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

16.
Protein concentration determination is a necessary in-process control for the downstream operations within biomanufacturing. As production transitions from batch mode to an integrated continuous bioprocess paradigm, there is a growing need to move protein concentration quantitation from off-line to in-line analysis. One solution to fulfill this process analytical technology need is an in-line index of refraction (IoR) sensor to measure protein concentration in real time. Here the performance of an IoR sensor is evaluated through a series of experiments to assess linear response, buffer matrix effects, dynamic range, sensor-to-sensor variability, and the limits of detection and quantitation. The performance of the sensor was also tested in two bioprocessing scenarios, ultrafiltration and capture chromatography. The implementation of this in-line IoR sensor for real-time protein concentration analysis and monitoring has the potential to improve continuous bioprocess manufacturing.  相似文献   

17.
N‐linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N‐linked glycosylation patterns in a CHO‐S cell fed‐batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High‐throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N‐linked glycosylation patterns during a fed‐batch process as a function of time as well as the manipulated variables. A constant and varying mAb N‐linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model‐based evaluation of feeding regimes using high‐throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135–1148, 2016  相似文献   

18.
Rotavirus like particles (RLPs) constitute a potential vaccine for the prevention of rotavirus disease, responsible for the death of more than half a million children each year. Increasing demands for pre-clinical trials material require the development of reproducible, scaleable and cost-effective purification strategies as alternatives to the traditional laboratory scale CsCl density gradient ultracentrifugation methods commonly used for the purification of these complex particles. Self-assembled virus like particles (VLPs) composed by VP2, VP6 and VP7 rotavirus proteins (VLPs 2/6/7) were produced in 5l scale using the insect cells/baculovirus expression system. A purification process using depth filtration, ultrafiltration and size exclusion chromatography as stepwise unit operations was developed. Removal of non-assembled rotavirus proteins, concurrently formed particles (RLP 2/6), particle aggregates and products of particle degradation due to shear was achieved. Particle stability during storage was studied and assessed using size exclusion chromatography as an analytical tool. Formulations containing either glycerol (10% v/v) or trehalose (0.5 M) were able to maintain 75% of intact triple layered VLPs, at 4 degrees C, up to 4 months. The overall recovery yield was 37% with removal of 95% of host cell proteins and 99% of the host cell DNA, constituting a promising strategy for the downstream processing of other VLPs.  相似文献   

19.
Influenza virus‐like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant‐based VLP manufacturing platform allowing the large‐scale production of GMP‐grade influenza VLPs. In this article, we report on the biochemical compositions of these plant‐based influenza candidate vaccines, more particularly the characterization of the N‐glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco‐derived lipid content and residual impurities. Mass spectrometry analyses showed that all N‐glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant‐specific complex‐type N‐glycans having core α(1,3)‐fucose, core β(1,2)‐xylose epitopes and Lewisa extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant‐made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme‐assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.  相似文献   

20.
Group B streptococci (GBS) contain a capsular polysaccharide with side chains terminating in α2,3‐linked sialic acids. Because of this linkage type, the sialic acids of GBS are recognised by lectins of immune cells. This interaction results in a dampening of the host immune response and thus promotes immune evasion. As several influenza A viruses (IAV) use α2,3‐linked sialic acid as a receptor determinant for binding to host cells, we analysed whether GBS and influenza viruses can interact with each other and how this interaction affects viral replication and bacterial adherence to and invasion of host cells. A co‐sedimentation assay revealed that viruses with a preference for α2,3‐linked sialic acids bind to GBS in a sialic acid‐dependent manner. There is, however, a large variation in the efficiency of binding among avian influenza viruses of different subtypes as shown by a hemagglutination‐inhibition assay. A delay in the growth curve of IAV indicated that GBS has an inhibitory effect on virus replication. On the other hand, both the adherence and invasion efficiency of GBS were enhanced when the cells were pre‐infected by IAV with appropriate receptor specificity. Our results suggest that GBS infection may result in a more severe disease when patients are co‐infected by influenza viruses. This co‐infection mechanism may have relevance also to other human diseases, as there are more bacterial pathogens with α2,3‐linked sialic acids and human viruses binding to this linkage type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号