首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The flux through the oxidative pentose phosphate (PP) pathway was estimated in Bacillus clausii, Saccharomyces cerevisiae, and Penicillium chrysogenum growing in chemostats with [1-(13)C]glucose as the limiting substrate. The flux calculations were based on a simple algebraic expression that is valid irrespective of isotope rearrangements arising from reversibilities of the reactions in the PP pathway and the upper part of the Embden-Meyerhof-Parnas pathway. The algebraically calculated fluxes were validated by comparing the results with estimates obtained using a numerical method that includes the entire central carbon metabolism. Setting the glucose uptake rate to 100, the algebraic expression yielded estimates of the PP pathway flux in B. clausii, S. cerevisiae, and P. chrysogenum of 20, 42, and 75, respectively. These results are in accordance with the results from the numerical method. The information on the labeling patterns of glucose and the proteinogenic amino acids were obtained using gas chromatography / mass spectrometry, which is a very sensitive technique, and therefore only a small amount of biomass is needed for the analysis. Furthermore, the method developed in this study is fast and readily accessible, as the calculations are based on a simple algebraic expression.  相似文献   

2.
3.
4.
    
Carbon dioxide-fixing acetogenic bacteria (acetogens) utilizing the Wood-Ljungdahl Pathway (WLP) play an important role in CO2 fixation in the biosphere and in the development of biological processes – alone or in cocultures, under both autotrophic and mixotrophic conditions – for production of chemicals and fuels. To date, limited work has been reported in experimentally validating and quantifying reaction fluxes of their core metabolic pathways. Here, the core metabolic model of the acetogen Clostridium ljungdahlii was interrogated using 13C-metabolic flux analysis (13C-MFA), which required the development of a new defined culture medium. Autotrophic, heterotrophic, and mixotrophic growth in defined medium was possible by adding 1 mM methionine to replace yeast extract. Our 13C-MFA found an incomplete TCA cycle and inactive core pathways/reactions, notably those of the oxidative pentose phosphate pathway, Entner-Doudoroff pathway, and malate dehydrogenase. 13C-MFA during mixotrophic growth using the parallel tracers [1–13C]fructose, [1,2–13C]fructose, [1,2,3–13C]fructose, and [U–13C]asparagine found that externally supplied CO2 contributed the majority of carbon consumed. All internally-produced CO2 from the catabolism of asparagine and fructose was consumed by the WLP. While glycolysis of fructose was active, it was not a major contributor to overall production of ATP, NADH, and acetyl-CoA. Gluconeogenic reactions were active despite the availability of organic carbon. Asparagine was catabolized equally via conversion to threonine and subsequent cleavage to produce acetaldehyde and glycine, and via deamination to fumarate and then the anaplerotic conversion of malate to pyruvate. Both pathways for asparagine catabolism produced acetyl-CoA, either directly via pyruvate or indirectly via the WLP. Cofactor stoichiometry based on our data predicted an essentially zero flux through the ferredoxin-dependent transhydrogenase (Nfn) reaction. Instead, nearly all of NADPH generated from the hydrogenase reaction was consumed by the WLP. Reduced ferredoxin produced by the hydrogenase reaction and glycolysis was mostly used for ATP generation via the RNF/ATPase system, with the remainder consumed by the WLP. NADH produced by RNF/ATPase was entirely consumed via the WLP.  相似文献   

5.
6.
    
How do intracellular fluxes respond to dynamically increasing glucose limitation when the physiology changes from strong overflow metabolism near to exclusively maintenance metabolism? Here we investigate this question in a typical industrial, glucose‐limited fed‐batch cultivation with a riboflavin overproducing Bacillus subtilis strain. To resolve dynamic flux changes, a novel approach to 13C flux analysis was developed that is based on recording 13C labeling patterns in free intracellular amino acids. Fluxes are then estimated with stationary flux ratio and iterative isotopomer balancing methods, for which a decomposition of the process into quasi‐steady states and estimation of isotopic steady state 13C labeling patterns was necessary. By this approach, we achieve a temporal resolution of 30–60 min that allows us to resolve the slow metabolic transients that typically occur in such cultivations. In the late process phase we found, most prominently, almost exclusive respiratory metabolism, significantly increased pentose phosphate pathway contribution and a strongly decreased futile cycle through the PEP carboxykinase. As a consequence, higher catabolic NADPH formation occurred than was necessary to satisfy the anabolic demands, suggesting a transhydrogenase‐like mechanism to close the balance of reducing equivalents. Biotechnol. Bioeng. 2010. 105: 795–804. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
    
A well-established way of determining metabolic fluxes is to measure 2D [(13)C,(1)H] COSY NMR spectra of components of biomass grown on uniformly (13)C-labeled carbon sources. When using the entire set of measured data to simultaneously determine all fluxes in a proposed metabolic network model, the (13)C-labeling distribution in all measured compounds has to be simulated. This requires very large sets of isotopomer or cumomer balances. This article introduces the new concept of bondomers; entities that only vary in the numbers and positions of C-C bonds that have remained intact since the medium substrate molecule entered the metabolism. Bondomers are shown to have many analogies to isotopomers. One of these is that bondomers can be transformed to cumulative bondomers, just like isotopomers can be transformed to cumomers. Similarly to cumomers, cumulative bondomers allow an analytical solution of the entire set of balances describing a metabolic network. The main difference is that cumulative bondomer models are considerably smaller than corresponding cumomer models. This saves computational time, allows easier identifiability analysis, and yields new insights in the information content of 2D [(13)C,(1)H] COSY NMR data. We illustrate the theoretical concepts by means of a realistic example of the glycolytic and pentose phosphate pathways. The combinations of 2D [(13)C,(1)H] COSY NMR data that allow identification of all metabolic fluxes in these pathways are analyzed, and it is found that the NMR data contain less information than was previously expected.  相似文献   

10.
NADPH is an essential cofactor for the biosynthesis of several high-value chemicals, including isoprenoids, fatty acid-based fuels, and biopolymers. Tunable control over all potentially rate-limiting steps, including the NADPH regeneration rate, is crucial to maximizing production titers. We have rationally engineered a synthetic version of the Entner–Doudoroff pathway from Zymomonas mobilis that increased the NADPH regeneration rate in Escherichia coli MG1655 by 25-fold. To do this, we combined systematic design rules, biophysical models, and computational optimization to design synthetic bacterial operons expressing the 5-enzyme pathway, while eliminating undesired genetic elements for maximum expression control. NADPH regeneration rates from genome-integrated pathways were estimated using a NADPH-binding fluorescent reporter and by the productivity of a NADPH-dependent terpenoid biosynthesis pathway. We designed and constructed improved pathway variants by employing the RBS Library Calculator to efficiently search the 5-dimensional enzyme expression space and by performing 40 cycles of MAGE for site-directed genome mutagenesis. 624 pathway variants were screened using a NADPH-dependent blue fluorescent protein, and 22 were further characterized to determine the relationship between enzyme expression levels and NADPH regeneration rates. The best variant exhibited 25-fold higher normalized mBFP levels when compared to wild-type strain. Combining the synthetic Entner–Doudoroff pathway with an optimized terpenoid pathway further increased the terpenoid titer by 97%.  相似文献   

11.
12.
         下载免费PDF全文
Inducible mammalian expression systems are increasingly being used for the production of valuable therapeutics. In such system, maximizing the product yield is achieved by carefully balancing the biomass concentration during the production phase and the specific productivity of the cells. These two factors are largely determined by the availability of nutrients and/or the presence of toxic waste metabolites in the culture environment. Glutamine is one of the most important components of cell culture medium, since this substrate is an important building block and source of energy for biomass and recombinant protein production. Its metabolism, however, ultimately leads to the formation of ammonia, a well known inhibitor of cellular growth and productivity. In this work, we show that nutrient feeding post‐induction can greatly enhance the product yield by alleviating early limitations encountered in batch. Moreover, varying the amount of glutamine in the feed yielded two distinct culture behaviors post‐induction; whereas excess glutamine allowed to reach greater cell concentrations, glutamine‐limited fed‐batch led to increased cell specific productivity. These two conditions also showed distinctive lactate metabolism. To further assess the physiological impact of glutamine levels on the cells, a comparative 13C‐metabolic flux analysis was conducted and a number of key intracellular fluxes were found to be affected by the amount of glutamine present in the feed during the production phase. Such information may provide useful clues for the identification of physiological markers of cell growth and productivity that could further guide the optimization of inducible expression systems. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:535–546, 2014  相似文献   

13.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
15.
    
At present two alternative methods are available for analyzing the fluxes in a metabolic network: (1) combining measurements of net conversion rates with a set of metabolite balances including the cofactor balances, or (2) leaving out the cofactor balances and fitting the resulting free fluxes to measured (13)C-labeling data. In this study these two approaches are applied to the fluxes in the glycolysis and pentose phosphate pathway of Penicillium chrysogenum growing on either ammonia or nitrate as the nitrogen source, which is expected to give different pentose phosphate pathway fluxes. The presented flux analyses are based on extensive sets of 2D [(13)C, (1)H] COSY data. A new concept is applied for simulation of this type of (13)C-labeling data: cumulative bondomer modeling. The outcomes of the (13)C-labeling based flux analysis substantially differ from those of the pure metabolite balancing approach. The fluxes that are determined using (13)C-labeling data are shown to be highly dependent on the chosen metabolic network. Extending the traditional nonoxidative pentose phosphate pathway with additional transketolase and transaldolase reactions, extending the glycolysis with a fructose 6-phosphate aldolase/dihydroxyacetone kinase reaction sequence or adding a phosphoenolpyruvate carboxykinase reaction to the model considerably improves the fit of the measured and the simulated NMR data. The results obtained using the extended version of the nonoxidative pentose phosphate pathway model show that the transketolase and transaldolase reactions need not be assumed reversible to get a good fit of the (13)C-labeling data. Strict statistical testing of the outcomes of (13)C-labeling based flux analysis using realistic measurement errors is demonstrated to be of prime importance for verifying the assumed metabolic model.  相似文献   

16.
姚瑞莲 《生物工程学报》2021,37(5):1510-1525
13C代谢流量分析(13C metabolic flux analysis,13C-MFA),是通过标记实验分析蛋白氨基酸或胞内代谢物同位素标记异构体的分布情况,从而准确定量胞内反应速率.该技术在系统理解细胞代谢特性、指导代谢工程改造和揭示病理生理学等方面起着重要作用,引起研究者的广泛重视.文中重点综述了代谢流分析30...  相似文献   

17.
    
This contribution addresses the identification of metabolic fluxes and metabolite concentrations in mammalian cells from transient (13)C-labeling experiments. Whilst part I describes experimental set-up and acquisition of required metabolite and (13)C-labeling data, part II focuses on setting up network models and the estimation of intracellular fluxes. Metabolic fluxes were determined in glycolysis, pentose-phosphate pathway (PPP), and citric acid cycle (TCA) in a hepatoma cell line grown in aerobic batch cultures. In glycolytic and PPP metabolite pools isotopic stationarity was observed within 30 min, whereas in the TCA cycle the labeling redistribution did not reach isotopic steady state even within 180 min. In silico labeling dynamics were in accordance with in vivo (13)C-labeling data. Split ratio between glycolysis and PPP was 57%:43%; intracellular glucose concentration was estimated at 101.6 nmol per 10(6) cells. In contrast to isotopic stationary (13)C-flux analysis, transient (13)C-flux analysis can also be applied to industrially relevant mammalian cell fed-batch and batch cultures.  相似文献   

18.
    
The metabolic network of Escherichia coli was constructed and was used to simulate the distribution of metabolic fluxes in wild-type E. coli and recombinant E. coli producing poly(3-hydroxybutyrate) [P(3HB)]. The flux of acetyl-CoA into the tricarboxylic acid (TCA) cycle, which competes with the P(3HB) biosynthesis pathway, decreased significantly during P(3HB) production. It was notable to find from in silico analysis that the Entner-Doudoroff (ED) pathway flux increased significantly under P(3HB)-accumulating conditions. To prove the role of ED pathway on P(3HB) production, a mutant E. coli strain, KEDA, which is defective in the activity of 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda), was examined as a host strain for the production of P(3HB) by transforming it with pJC4, a plasmid containing the Alcaligenes latus P(3HB) biosynthesis operon. The P(3HB) content obtained with KEDA (pJC4) was lower than that obtained with its parent strain KS272 (pJC4). The reduced P(3HB) biosynthetic capacity of KEDA (pJC4) could be restored by the co-expression of the E. coli eda gene, which proves the important role of ED pathway on P(3HB) synthesis in recombinant E. coli as predicted by metabolic flux analysis.  相似文献   

19.
20.
    
13C metabolic flux analysis (MFA) is a well-established tool in Metabolic Engineering that found numerous applications in recent years. However, one strong limitation of the current method is the requirement of an-at least approximate-isotopic stationary state at sampling time. This requirement leads to a principle lower limit for the duration of a 13C labeling experiment. A new methodological development is based on repeated sampling during the instationary transient of the 13C labeling dynamics. The statistical and computational treatment of such instationary experiments is a completely new terrain. The computational effort is very high because large differential equations have to be solved and, moreover, the intracellular pool sizes play a significant role. For this reason, the present contribution works out principles and strategies for the experimental design of instationary experiments based on a simple example network. Hereby, the potential of isotopically instationary experiments is investigated in detail. Various statistical results on instationary flux identifiability are presented and possible pitfalls of experimental design are discussed. Finally, a framework for almost optimal experimental design of isotopically instationary experiments is proposed which provides a practical guideline for the analysis of large-scale networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号