首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.  相似文献   

2.
3.
Mesenchymal stromal cells (MSCs) have been isolated from numerous sources and are potentially therapeutic against various diseases. Umbilical cord-derived MSCs (UC-MSCs) are considered superior to other tissue-derived MSCs since they have a higher proliferation rate and can be procured using less invasive surgical procedures. However, it has been recently reported that 2D culture systems, using conventional cell culture flasks, limit the mass production of MSCs for cell therapy. Therefore, the development of alternative technologies, including microcarrier-based cell culture in bioreactors, is required for the large-scale production and industrialization of MSC therapy. In this study, we aimed to optimize the culture conditions for UC-MSCs by using a good manufacturing practice (GMP)-compatible serum-free medium, developed in-house, and a small-scale (30 mL) bioreactor, which was later scaled up to 500 mL. UC-MSCs cultured in microcarrier-based bioreactors (MC-UC-MSCs) showed characteristics equivalent to those cultured statically in conventional cell culture flasks (ST-UC-MSCs), fulfilling the minimum International Society for Cellular Therapy criteria for MSCs. Additionally, we report, for the first time, the equivalent therapeutic effect of MC-UC-MSCs and ST-UC-MSCs in immunodeficient mice (graft-versus-host disease model). Lastly, we developed a semi-automated cell dispensing system, without bag-to-bag variation in the filled volume or cell concentration. In summary, our results show that the combination of our GMP-compatible serum-free and microcarrier-based culture systems is suitable for the mass production of MSCs at an industrial scale. Further improvements in this microcarrier-based cell culture system can contribute to lowering the cost of therapy and satisfying several unmet medical needs.  相似文献   

4.
Continuous upstream processing in mammalian cell culture for recombinant protein production holds promise to increase product yield and quality. To facilitate the design and optimization of large-scale perfusion cultures, suitable scale-down mimics are needed which allow high-throughput experiments to be performed with minimal raw material requirements. Automated microbioreactors are available that mimic batch and fed-batch processes effectively but these have not yet been adapted for perfusion cell culture. This article describes how an automated microbioreactor system (ambr15) can be used to scale-down perfusion cell cultures using cell sedimentation as the method for cell retention. The approach accurately predicts the viable cell concentration, in the range of about 1 × 107 cells/mL for a human cell line, and cell viability of larger scale cultures using a hollow fiber based cell retention system. While it was found to underpredict cell line productivity, the method accurately predicts product quality attributes, including glycosylation profiles, from cultures performed in bioreactors with working volumes between 1 L and 1,000 L. The spent media exchange method using the ambr15 was found to predict the influence of different media formulations on large-scale perfusion cultures in contrast to batch and chemostat experiments performed in the microbioreactor system. The described experimental setup in the microbioreactor allowed an 80-fold reduction in cell culture media requirements, half the daily operator time, which can translate into a cost reduction of approximately 2.5-fold compared to a similar experimental setup at bench scale.  相似文献   

5.
6.
Background aimsMultipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown.MethodsMSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to “rescue” the proliferative capacity of MSCs.ResultshPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS.ConclusionshPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.  相似文献   

7.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   

8.
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.  相似文献   

9.
The number and use of automated cell culture systems for mammalian cell culture are steadily increasing. Automated cell culture systems require miniaturized analytics with a high throughput to obtain as much information as possible from single experiments. Standard analytics commonly used for conventional bioreactor samples cannot handle the high throughput and the low sample volumes. Spectroscopic methods provide a means of meeting this analytical requirement and afford fast and direct access to process information. In the first part of this review, UV/VIS, fluorescence, Raman, near‐infrared, and mid‐infrared spectroscopy are presented. In the second part of the review, these spectroscopic methods are evaluated in terms of their applicability in the new field of mammalian cell culture processes in automated cell culture systems. Unlike standard bioreactors, these automated systems have special requirements that apply to the use of spectroscopic methods. Therefore, they are compared with regard to cell culture automation, throughput, and required sample volume.  相似文献   

10.
Human mesenchymal stromal cells (hMSCs) cells are attractive for applications in tissue engineering and cell therapy. Because of the low availability of hMSCs in tissues and the high doses of hMSCs necessary for infusion, scalable and cost‐effective technologies for in vitro cell expansion are needed to produce MSCs while maintaining their functional, immunophenotypic and cytogenetic characteristics. Microcarrier‐based culture systems are a good alternative to traditional systems for hMSC expansion. The aim of the present study was to develop a scalable bioprocess for the expansion of human bone marrow mesenchymal stromal cells (hBM‐MSCs) on microcarriers to optimize growth and functional harvesting. In general, the results obtained demonstrated the feasibility of expanding hBM‐MSCs using microcarrier technology. The maximum cell concentration (n = 5) was ~4.82 ± 1.18 × 105 cell mL?1 at day 7, representing a 3.9‐fold increase relative to the amount of inoculated cells. At the end of culture, 87.2% of the cells could be harvested (viability = 95%). Cell metabolism analysis revealed that there was no depletion of important nutrients such as glucose and glutamine during culture, and neither lactate nor ammonia byproducts were formed at inhibitory concentrations. The cells that were recovered after the expansion retained their immunophenotypic and functional characteristics. These results represent an important step toward the implementation of a GMP‐compliant large‐scale production system for hMSCs for cellular therapy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:889–895, 2014  相似文献   

11.
The ambr bioreactors are single‐use microbioreactors for cell line development and process optimization. With operating conditions for large‐scale biopharmaceutical production properly scaled down, microbioreactors such as the ambr15? can potentially be used to predict the effect of process changes such as modified media or different cell lines. While there have been some recent studies evaluating the ambr15? technology as a scale‐down model for fed‐batch operations, little has been reported for semi‐continuous or continuous operation. Gassing rates and dilution rates in the ambr15? were varied in this study to attempt to replicate performance of a perfusion process at the 5 L scale. At both scales, changes to metabolite production and consumption, and cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15? bioreactor that produced metabolic shifts and specific metabolic and protein production rates that are characteristic of the corresponding 5 L perfusion process. A dynamic flux balance (DFB) model was employed to understand and predict the metabolic changes observed. The DFB model predicted trends observed experimentally, including lower specific glucose consumption and a switch from lactate production to consumption when dissolved CO2 was maintained at higher levels in the broth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:420–431, 2018  相似文献   

12.
Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot‐sizes required for commercial production. The use of animal‐derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot‐to‐lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large‐scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum‐free hMSC manufacturing process. Human bone‐marrow derived hMSCs were expanded on fibronectin‐coated, non‐porous plastic microcarriers in 100 mL stirred spinner flasks at a density of 3 × 105 cells.mL−1 in serum‐free medium. The hMSCs were successfully harvested by our recently‐developed technique using animal‐free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post‐harvest viability of 99.63 ± 0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony‐forming potential. The hMSCs were held in suspension post‐harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum‐free vehicle solution using a controlled‐rate freezing process. Post‐thaw viability was 75.8 ± 1.4% with a similar 3 h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component‐free hMSC production process from expansion through to cryopreservation. Biotechnol. Bioeng. 2015;112: 1696–1707. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   

13.
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed‐batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled‐up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale‐up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018  相似文献   

14.
15.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


16.
Cellular populations with phenotypes similar to multipotent mesenchymal stromal cells were isolated from two different sources, including human bone marrow (BM) and subcutaneous adipose tissue (SAT). Comparative analysis of the efficiency of differentiation in the direction of osteogenesis has revealed morphological changes confirmed by staining with Alizarin red and von Kossa in bone marrow cells at the 14th day and in adipose tissue cells at the 28th day of cultivation in the medium with inductors. Analysis of expression of the osteopontin, osteocalcin, and bone sialoprotein genes in RT-PCR reactions has detected essential differences in the potential of these cells to differentiate into bone tissue cells. Cells isolated from BM of both the control and experimental groups were positive for octeopontin (OP) on the 14th day. Unlike these cells, in cells isolated from SAT in medium without an inductor, no product of OP gene expression was identified. In the cells subjected to differentiation, OP appeared at day 14. In the BM cells, octeocalcin (OC) was found at the 14th day, while the bone sialoprotein (BS) was found at the 21st day of cultivation in induction medium. In cells isolated from SAT, OC, and BS were not detected, even at the 28th day after the beginning of induction.  相似文献   

17.
We have developed a novel three‐dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high‐throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox‐1, whose levels were also measured in situ using a GFP reporter system. In addition, the high‐throughput capacity of the platform was tested using a dual‐slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor‐4 (FGF‐4) on the pluripotency of mouse ES cells. This high‐throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high‐throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high‐throughput disruption methods exist. The development of an automated, miniaturized, high‐throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high‐pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA‐based methods to mimic large‐scale homogenization processes. These results demonstrate that AFA‐mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130–140, 2018  相似文献   

19.
An ultra scale‐down method is described to determine the response of cells to recovery by dead‐end (batch) centrifugation under commercially defined manufacturing conditions. The key variables studied are the cell suspension hold time prior to centrifugation, the relative centrifugal force (RCF), time of centrifugation, cell pellet resuspension velocities, and number of resuspension passes. The cell critical quality attributes studied are the cell membrane integrity and the presence of selected surface markers. Greater hold times and higher RCF values for longer spin times all led to the increased loss of cell membrane integrity. However, this loss was found to occur during intense cell resuspension rather than the preceding centrifugation stage. Controlled resuspension at low stress conditions below a possible critical stress point led to essentially complete cell recovery even at conditions of extreme centrifugation (e.g., RCF of 10000 g for 30 mins) and long (~2 h) holding times before centrifugation. The susceptibility to cell loss during resuspension under conditions of high stress depended on cell type and the age of cells before centrifugation and the level of matrix crosslinking within the cell pellet as determined by the presence of detachment enzymes or possibly the nature of the resuspension medium. Changes in cell surface markers were significant in some cases but to a lower extent than loss of cell membrane integrity. Biotechnol. Bioeng. 2015;112: 997–1011. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
《Cytotherapy》2014,16(1):64-73
Background aimsMesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation.MethodsMSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells.ResultsHuman L-MSC cultures were typically CD34, CD45 and HLA-DR and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation.ConclusionsL-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号