首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na2SeO3 as the Se source by a rapid and room temperature photochemical (UV‐assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV–visible (UV–vis) spectroscopy, Fourier transform‐infrared (FT‐IR), and energy dispersive X‐ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round‐shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2T2 acceptor levels of Cu2+. The emission was increased by increasing the Cu2+ ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%.  相似文献   

2.
The interactions between 2‐mercaptoethanol, dimercaprol and CdSe quantum dots (QDs) in organic media have been investigated by spectral methods. The results showed that the fluorescence (FL) emission of CdSe QDs gradually decreased, with a slight red‐shift, after adding thiols to CdSe QDs solutions. With the increase of the concentrations of thiols, the resonance light scattering (RLS) signal of CdSe QDs had been strongly enhanced in the wavelength range 300–500 nm, which was confirmed by the formation of larger CdSe QDs particles. The effect of thiols on the FL emission of CdSe QDs could be described by a Stern–Volmer‐type equation with the concentration ranges 1.0 × 10–6–7.5 × 10–4 mol/L for 2‐mercaptoethanol and 1.0 × 10–7–2.5 × 10–5 mol/L for dimercaprol. The possible mechanism of the interaction was proposed according to the results of UV‐vis absorption and micro‐Raman spectroscopy. The results indicated that FL quenching was mainly attributable to the exchange of the QDs surface molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Core–shell structured quantum dot (QD)–silica fluorescent nanoparticles have attracted a great deal of attention due to the excellent optical properties of QDs and the stability of silica. In this study, core–shell structured CdTe/CdS@SiO2@CdTe@SiO2 fluorescent nanospheres were synthesized based on the Stöber method using multistep silica encapsulation. The second silica layer on the CdTe QDs maintained the optical stability of nanospheres and decreased adverse influences on the probe during subsequent processing. Red‐emissive CdTe/CdS QDs (630 nm) were used as a built‐in reference signal and green‐emissive CdTe QDs (550 nm) were used as a responding probe. The fluorescence of CdTe QDs was greatly quenched by added S2?, owing to a S2?‐induced change in the CdTe QDs surface state in the shell. Upon addition of Cd2+ to the S2?‐quenched CdTe/CdS@SiO2@CdTe@SiO2 system, the responding signal at 550 nm was dramatically restored, whereas the emission at 630 nm remained almost unchanged; this response could be used as a ratiometric ‘off–on’ fluorescent probe for the detection of Cd2+. The sensing mechanism was suggested to be: the newly formed CdS‐like cluster with a higher band gap facilitated exciton/hole recombination and effectively enhanced the fluorescence of the CdTe QDs. The proposed probe shows a highly sensitive and selective response to Cd2+ and has potential application in the detection of Cd2+ in environmental or biological samples.  相似文献   

4.
Ning Liu  Ping Yang 《Luminescence》2014,29(6):566-572
Hybrid SiO2‐coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2‐coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2‐coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate‐buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2‐coated CdTe/CdSe QDs. During the stabilization test in phosphate‐buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2‐coated CdTe QDs. As a result, hybrid SiO2‐coated CdTe/CdSe QDs can be used in bioapplications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
“Giant” core/shell quantum dots (g‐QDs) are a promising class of materials for future optoelectronic technologies due to their superior chemical‐ and photostability compared to bare QDs and core/thin shell QDs. However, inadequate light absorption in the visible and near‐infrared (NIR) region and frequent use of toxic heavy metals (e.g., Cd and Pb) are still major challenges for most g‐QDs (e.g., CdSe/CdS) synthesized to date. The synthesis of NIR, heavy metal‐free, Zn‐treated spherical CuInSe2/CuInS2 g‐QDs is reported using the sequential cation exchange method. These g‐QDs exhibit tunable NIR optical absorption and photoluminescence (PL) properties. Transient fluorescence spectroscopy shows prolonged lifetime with increasing shell thickness, indicating the formation of quasi type‐II band alignment, which is further confirmed by simulations. As a proof‐of‐concept, as‐synthesized g‐QDs are used to sensitize TiO2 as a photoanode in a photoelectrochemical (PEC) cell, demonstrating an efficient and stable PEC system. These results pave the way toward synthesizing NIR heavy metal‐free g‐QDs, which are very promising components of future optoelectronic technologies.  相似文献   

6.
The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as‐synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core‐to‐shell electrons leakage. The large‐area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD‐based LSCs and other reported NIR QD‐based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi‐transparent large‐area LSCs.  相似文献   

7.
The internalization of a series of water-soluble CdSe/CdS quantum dots (QDs) stabilized by citrate, isocitrate, succinate, and malate by Escherichia coli is established by epifluorescence and confocal fluorescence scanning microscopy, fluorimetry, and UV–vis spectroscopy on whole and lysed bacterial cells. The organic-acid-stabilized QDs span a range in size from 3.8±1.1 to 6.0±2.4 nm with emission wavelengths from 540 to 630 nm. QDs of different sizes (i.e., 3.8–6 nm) can enter the bacterium and be detected on different fluorescence channels with little interference from other QDs as a result of the distinct emission profiles (i.e., 540–630 nm, respectively). Costaining QD-labeled E. coli with 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) demonstrates that the QDs and DAPI are colocalized within E. coli, whereas costaining QD-labeled E. coli with membrane dye FM4-64 shows that the FM4-64 is localized in the outer bacterial membrane and that the QDs are inside.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

8.
High‐quality CdxZn1 – xSe and CdxZn1 – xSe/ZnS core/shell quantum dots (QDs) emitting in the violet–green spectral range have been successfully prepared using hydrothermal methods. The obtained aqueous CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs exhibit a tunable photoluminescence (PL) emission (from 433.5 nm to 501.2 nm) and a favorable narrow photoluminescence bandwidth [full width at half maximum (FWHM): 30–42 nm]. After coating with a ZnS shell, the quantum yield increases from 40.2% to 48.1%. These CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were characterized by transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and Fourier transform infrared (FTIR) spectroscopy. To further understand the alloying mechanism, the growth kinetics of CdxZn1 – xSe were investigated through measuring the fluorescence spectra and X‐ray diffraction spectra at different growth intervals. The results demonstrate that the inverted ZnSe/CdSe core/shell structure is formed initially after the injection of Cd2+. With further heating, the core/shell structured ZnSe/CdSe is transformed into alloyed CdxZn1 – xSe QDs with the diffusion of Cd2+ into ZnSe matrices. With increasing the reaction temperature from 100 °C to 180 °C, the duration time of the alloying process decreases from 210 min to 20 min. In addition, the cytotoxicity of CdxZn1 – xSe and CdxZn1 – xSe/ZnS QDs were investigated. The results indicate that the as‐prepared CdxZn1 – xSe/ZnS QDs have low cytotoxicity, which makes them a promising probe for cell imaging. Finally, the as‐prepared CdxZn1 – xSe/ZnS QDs were utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (1.8 nM).  相似文献   

9.
To create core/shell/shell quantum dots (QDs) with high stability against a harmful chemical environment, CdTe/CdS QDs were coated with a ZnO shell in an aqueous solution. An interfaced CdS layer sandwiched between a CdTe core and ZnO shell provided relaxation of the strain at the core/shell interface since lattice parameters of CdS are intermediate between those of CdTe and ZnO. The photoluminescence (PL) peak wavelength of the core/shell/shell QDs was shifted from 569 to 615 nm by adjusting the size of CdTe cores and thickness of CdS and ZnO shells, along with the highest PL quantum yield of the core/shell/shell QDs reaching 80%, which implies promising applications in the field of biomedical labeling. Due to the decrease of surface defects, it was observed that PL lifetimes significantly increased at room temperature as follows: 29.6 34.2, and 47.5 ns for CdTe (537 nm), CdTe/CdS (555 nm) and CdTe/CdS/ZnO (581 nm) QDs, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we described a strategy for synthesis of thiol‐coated CdTe/CdS/ZnS (core–shell–shell) quantum dots (QDs) via aqueous synthesis approach. The synthesis conditions were systematically optimized, which included the size of CdTe core, the refluxing time and the number of monolayers and the ligands, and then the chemical and optical properties of the as‐prepared products were investigated. We found that the mercaptopropionic acid (MPA)‐coated CdTe/CdS/ZnS QDs presented highly photoluminescent quantum yields (PL QYs), good photostability and chemical stability, good salt tolerance and pH tolerance and favorable biocompatibility. The characterization of high‐resolution transmission electron microscopy (HRTEM), X‐ray powder diffraction (XRD) and fluorescence correlation spectroscopy (FCS) showed that the CdTe/CdS/ZnS QDs had good monodispersity and crystal structure. The fluorescence life time spectra demonstrated that CdTe/CdS/ZnS QDs had a longer lifetime in contrast to fluorescent dyes and CdTe QDs. Furthermore, the MPA‐stabilized CdTe/CdS/ZnS QDs were applied for the imaging of cells. Compared with current synthesis methods, our synthesis approach was reproducible and simple, and the reaction conditions were mild. More importantly, our method was cost‐effective, and was very suitable for large‐scale synthesis of CdTe/CdS/ZnS QDs for future applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We compared the effects of several ligands frequently used in aqueous synthesis, including L‐cysteine, L‐cysteine hydrochloride, N‐acetyl‐L‐cysteine (NAC), glutathione and 3‐mercaptopropionic acid, for microwave synthesis of CdTe quantum dots (QDs) in a sealed vessel with varied temperatures and times, and then developed a rapid microwave‐assisted protocol for preparing highly luminescent, photostable and biocompatible CdTe/CdS/ZnS core–multishell QDs. The effects of molecular structures of these ligands on QD synthesis under high temperatures were explored. Among these ligands, NAC was found to be the optimal ligand in terms of the optical properties of resultant QDs and reaction conditions. The emission wavelength of NAC‐capped CdTe QDs could reach 700 nm in 5 min by controlling the reaction temperature, and the resultant CdTe/CdS/ZnS core–multishell QDs could achieve the highest quantum yields up to 74% with robust photostability. In addition, the effects of temperature, growth time and shell–precursor ratio on shell growth were examined. Finally, cell culturing indicated the low cytotoxicity of CdTe/CdS/ZnS core–multishell QDs as compared to CdTe and CdTe/CdS QDs, suggesting their high potential for applications in biomedical imaging and diagnostics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This study reports the influence of CdSe–ZnS core–shell quantum dots (QDs) for formation of singlet oxygen using zinc‐phthalocyanine (ZnPc) dyes in colloidal solutions. Using a microluminescence surface scan technique it was possible to measure accurately the photon diffusion length, or photon mean free path, inside the medium. Analyses were performed for a range of QD concentrations. Photon diffusion length was assigned to the bimolecular singlet oxygen emission at 707 nm. Related singlet oxygen emission was predicted by observing quenching of the photon diffusion length measured at the specific oxygen emission as a function of QD concentration, being a nontrivial phenomenon related to the QD donors. Diffusion length measured at 707 nm increased with QD concentration; in the absence of QDs, as in pure ZnPc samples, the emission peak at 707 nm was not observed.  相似文献   

13.
Core‐shell CdS/ZnS (Zn 0.025?0.125 M) and CdS:Cu2+(1%)/ZnS nanoparticles were successfully synthesized using a chemical method. X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR TEM), photoluminescence (PL) and UV/Visible (UV/Vis) techniques were used to characterize the novel CdS/ZnS and CdS:Cu2+/ZnS core–shell nanoparticles. All absorption peaks of the synthesized samples were highly blue‐shifted from the bulk CdS and ZnS. Very narrow and symmetric PL emission was observed in the yellow region for core–shell CdS/ZnS. Furthermore, the PL emission of CdS/ZnS was tuned into orange region by incorporate the Cu ion into the core CdS lattice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Nanoparticles of cadmium selenide (CdSe) doped with europium, were synthesized as stabilizing agents using thioglycolic acid ligand. This method is based on the enhancing effect of CdSe quantum dots (QDs) doped with europium on chemiluminescence (CL) emission. This emission was generated by mixing CdSe QDs with manganese (II), iron (II) and chrome (II) sulfates as catalysts in the presence of hydrogen peroxide (H2O2). The structural characteristics and morphology of these nanoparticles were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet–visible absorption spectroscopy, X‐ray pattern and dynamic light scattering methods. The CdSe QDs doped with europium were used as the sensitizer in a luminol?hydrogen peroxide CL system. The sensitized CdSe QDs were analyzed for antibacterial activity against Gram‐positive or Gram‐negative bacteria. The results showed that the CdSe QDs are effective against all the studied bacteria, effectiveness was especially higher for Bacillus subtilis.  相似文献   

15.
Quantum dots (QDs) have been encapsulated within gelatin nanoparticles (GNPs), which gives GNPs fluorescent properties and improves the biocompatibility of QDs. Hydrophilic CdSe QDs were produced through thermodecomposition following the ligand‐exchange method, and were then encapsulated in GNPs. The results of high‐resolution transmission electron microscopy and transmission electron microscopy show that CdSe QDs and QDs‐encapsulated GNPs (QDs‐GNPs) have average diameters of 5 ± 1 and 150 ± 10 nm, respectively. Results of both high‐resolution transmission electron microscopy and confocal laser scanning microscopy indicate that CdSe QDs are successfully encapsulated within GNPs. The QDs‐GNPs have distinctive fluorescent properties with maximum emission at 654 nm, with a 24 nm red‐shift comapred with hydrophilic mercaptoundecanoic acid (MUA)‐modified QDs. In addition, an in vitro cytotoxicity test shows that QDs‐GNPs do not have any toxic effect on cells. It is expected that QDs‐GNPs might be an excellent candidate as a contrast agent in bio‐imaging. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Ag2S@CdS core–shell particles were synthesized with different Cd source content as a measure of shell thickness using a pulsed microwave irradiation method. The particles were verified structurally using X‐ray diffraction, energy dispersive X‐ray analysis and transmission electron microscopy. Optical spectroscopy revealed that core–shells show an absorption peak at 750 nm and an emission peak located around 800 nm after 6 min of microwave irradiation. With continued microwave treatment, the NIR luminescence first vanished but it was revived after 12 min of irradiation, which was 100 nm red shifted. This new type of NIR emission in Ag2S with sizes greater than 5 nm is due to the proximity of a highly deficient CdS shell with strong red emission that was stable for more than 6 months in water. A mechanism has been suggested for this type of emission.  相似文献   

17.
Water‐soluble thioglycolic acid (TGA)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. The interactions of rhein and emodin with TGA‐CdTe/CdS QDs were evaluated by fluorescence and ultraviolet‐visible absorption spectroscopy. Experimental results showed that the high fluorescence intensity of TGA‐CdTe/CdS QDs could be effectively quenched in the presence of rhein (or emodin) at 570 nm, which may have resulted from an electron transfer process from excited TGA‐CdTe/CdS QDs to rhein (or emodin). The quenching intensity was in proportion to the concentration of both rhein and emodin in a certain range. Under optimized conditions, the linear ranges of TGA‐CdTe/CdS QDs fluorescence intensity versus the concentration of rhein and emodin were 0.09650–60 µg/mL and 0.1175–70 µg/mL with a correlation coefficient of 0.9984 and 0.9965, respectively. The corresponding detection limits (3σ/S) of rhein and emodin were 28.9 and 35.2 ng/mL, respectively. This proposed method was applied to determine rhein and emodin in human urine samples successfully with remarkable advantages such as high sensitivity, short analysis time, low cost and easy operation. Based on this, a simple, rapid and highly sensitive method to determine rhein (or emodin) was proposed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A method of microwave (MW) assisted synthesis was employed to prepare cadmium sulfide (CdS) quantum dots (QDs) in dimethylformamide in the presence of poly(methyl methacrylate) (PMMA). The MW irradiation was carried out for a fixed time of 20-30 s and the size of QDs varied from 2.9-5.5 nm. Before each irradiation the solution was cooled down to ambient temperature and the irradiation process was repeated six times. An increase in the intensity and red shift of the characteristic UV-vis absorption peak originating from CdS QDs were observed with repeated MW irradiation, suggesting that the amount of generated CdS QDs increased within the PMMA network and aggregated with repeated MW irradiation. MW irradiation could influence selectively the nucleation and growing rates of PMMA-CdS QDs systems. The broadness and large Stokes shift of the emission from Cd(2+)-rich PMMA-CdS QDs was due to the surface trap state photoluminescence. The recombination of shallow trapped electrons and shallow trapped holes has been considered as the primary source of the surface trap state photoluminescence in Cd(2+)-rich PMMA-CdS QDs. The photoluminescence lifetime was observed to be decreased sharply when the amount of QDs was less, showing the emission decay was dependent on the surface property of PMMA-CdS QDs. The origin of the longer lifetime was due to the involvement of surface trap states and dependent on the amount of CdS QDs present within PMMA and its environment. The effect of the concentration of Cd(2+), S(2-) and PMMA on the generation of CdS QDs within PMMA and the effect of repeated MW irradiation on the optical properties was studied and the results are discussed in this article.  相似文献   

19.
Water-soluble, biological-compatible, and excellent fluorescent CdSe/CdS quantum dots (QDs) with L-cysteine as capping agent were synthesized in aqueous medium. Fluorescence (FL) spectra, absorption spectra, and transmission electron microscopy (TEM) were employed to investigate the quality of the products. The interactions between QDs and bovine serum albumin (BSA) were studied by absorption and FL titration experiments. With addition of QDs, the FL intensity of BSA was significantly quenched which can be explained by static mechanism in nature. When BSA was added to the solution of QDs, FL intensity of QDs was faintly quenched. Fluorescent imaging suggests that QDs can be designed as a probe to label the Escherchia coli (E. coli) cells. These results indicate CdSe/CdS/L-cysteine QDs can be used as a probe for labeling biological molecule and bacteria cells.  相似文献   

20.
Water‐soluble glutathione (GSH)‐capped core/shell CdTe/CdS quantum dots (QDs) were synthesized. In pH 5.4 sodium phosphate buffer medium, the interaction between GSH‐CdTe/CdS QDs and sanguinarine (SA) was investigated by spectroscopic methods, including fluorescence spectroscopy and ultraviolet‐visible absorption spectroscopy. Addition of SA to GSH‐CdTe/CdS QDs results in fluorescence quenching of GSH‐CdTe/CdS QDs. Quenching intensity was in proportion to the concentration of SA in a certain range. Investigation of the quenching mechanism, proved that the fluorescence quenching of GSH‐CdTe/CdS QDs by SA is a result of electron transfer. Based on the quenching of the fluorescence of GSH‐CdTe/CdS QDs by SA, a novel, simple, rapid and specific method for SA determination was proposed. The detection limit for SA was 3.4 ng/mL and the quantitative determination range was 0.2–40.0 µg/mL with a correlation coefficient of 0.9988. The method has been applied to the determination of SA in synthetic samples and fresh urine samples of healthy human with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号