首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium (Ce3+)‐doped (1, 3, and 7 mol%) yttrium vanadate phosphors were prepared using a co‐precipitation technique. The structural and optical properties of the synthesized samples were studied using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), high‐resolution transmission electron microscopy (HR‐TEM), optical absorption, and photoluminescence (PL) spectroscopy techniques. The tetragonal structure and the formation of the nanosized crystallites in the YVO4:Ce phosphor were confirmed using XRD analysis. HR‐TEM morphology showed rod‐like nanoparticles of different sizes. Optical absorption spectra demonstrated strong absorption bands at 268 and 276 nm. PL spectra showed strong peaks at 546, 574, and 691 nm following excitation at 300 nm. The calculated CIE chromaticity coordinates demonstrated that YVO4:Ce could be used as a novel phosphor for the development of light‐emitting diode lamps.  相似文献   

2.
Dy3+‐doped ZnO nanofibres with diameters from 200 to 500 nm were made using an electrospinning technique. The as‐fabricated amorphous nanofibres resulted in good crystalline continuous nanofibres through calcination. Dy3+‐doped ZnO nanofibres were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction (XRD), ultraviolet–visible (UV–vis) light spectroscopy, Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL). XRD showed the well defined peaks of ZnO. UV–vis spectra showed a good absorption band at 360 nm. FTIR spectra showed a Zn–O stretching vibration confirming the presence of ZnO. Photoluminescence spectra of Dy3+‐doped ZnO nanofibres showed an emission peak in the visible region that was free from any ZnO defect emission. Emissions at 480 nm and 575 nm in the Dy3+‐doped ZnO nanofibres were the characteristic peaks of dopant Dy3+ and implied efficient energy transfer from host to dopant. Luminescence intensity was found to be increased with increasing doping concentration and reduction in nanofibre diameter. Colour coordinates were calculated from photometric characterizations, which resembled the properties for warm white lighting devices.  相似文献   

3.
Highly luminescent, polymer nanocomposite films based on poly(vinyl alcohol) (PVA), and monodispersed carbon dots (C‐dots) derived from multiwalled carbon nanotubes (MWCNTs), as coatings on substrates as well as free standing ones are obtained via solution‐based techniques. The synthesized films exhibit pH‐independent photoluminescence (PL) emission, which is an advantageous property compared with the pH‐dependent photoluminescence intensity variations, generally observed for the C‐dots dispersed in aqueous solution. The synthesized C‐dots and the nanocomposite films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infra‐red spectroscopy ( FTIR), ultraviolet (UV) ? visible spectroscopy and photoluminescence spectroscopy (PL) techniques. The TEM image provides clear evidence for the formation of C‐dots of almost uniform shape and average size of about 8 nm, homogeneously dispersed in aqueous medium. The strong anchoring of C‐dots within the polymer matrix can be confirmed from the XRD results. The FTIR spectral studies conclusively establish the presence of oxygen functional groups on the surfaces of the C‐dots. The photoluminescence (PL) emission spectra of the nanocomposite films are broad, covering most part of the visible region. The PL spectra do not show any luminescence intensity variations, when the pH of the medium is changed from 1 to 11. The pH‐independent luminescence, shown by these films offers ample scope for using them as coatings for designing diagnostic and imaging tools in bio medical applications. The non‐toxic nature of these nanocomposite films has been established on the basis of cytotoxicity studies.  相似文献   

4.
Copper‐doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X‐ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)‐passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn2+ as well as Cu2+ ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A novel blue luminescent 6‐chloro‐2‐(4‐cynophenyl) substituted diphenyl quinoline (Cl‐CN DPQ) organic phosphor has been synthesized by the acid‐catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl‐CN‐DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X‐ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X‐ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1H–NMR and 13C–NMR confirmed the formation of an organic Cl‐CN‐DPQ compound. X‐ray diffraction study provided its crystalline nature. The surface morphology of Cl‐CN‐DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl‐CN‐DPQ were investigated by UV–vis absorption and photoluminescence (PL) measurements. Cl‐CN‐DPQ exhibits intense blue emission at 434 nm in a solid‐state crystalline powder with CIE co‐ordinates (0.157, 0.027), when excited at 373 nm. Cl‐CN‐DPQ shows remarkable Stokes shift in the range 14800–5100 cm?1, which is the characteristic feature of intense light emission. A narrow full width at half‐maximum (FWHM) value of PL spectra in the range 42–48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV–vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor‐based solar cells and displays, organic lasers, chemical sensors and many more.  相似文献   

6.
This paper presents a green and cost‐effective recipe for the synthesis of blue‐emitting ZnO nanoparticles (NPs) using cellulose bio‐templates. Azadirachta indica (neem) leaf extract prepared in different solvents were used as biological templates to produce nanostructures of wurtzite ZnO with a particle size ~12–36 nm. A cellulose‐driven capping mechanism is used to describe the morphology of ZnO NPs. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform infra‐red (FTIR) and photoluminescence (PL) studies showed that solvents affect the growth process and the capping mechanism of bio‐template severely. Structural changes in ZnO NPs were evident with variation in pH, dielectric constants (DC) and boiling points (BP) of solvents. Furthermore, an energy band model is proposed to explain the origin of the blue emission in the as‐obtained ZnO NPs. PL excitation studies and the theoretical enthalpy values of individual defects were used to establish the association between the interstitial‐zinc‐related defect levels and the blue emission. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Nanocrystalline SrS phosphors doped with Ce3+ ions at different concentrations (0.5, 1, 1.5 and 2 mol%) are synthesized via the solid‐state diffusion method (SSDM), which is suitable for the large‐scale production of phosphors in industrial applications. The as‐prepared samples are characterized using an X‐ray diffraction (XRD) technique, field emission scanning electron microscopy (FESEM), high‐resolution transmission electron microscopy (HRTEM) and energy‐dispersive X‐ray (EDX) analysis. The optical properties of these phosphors are analyzed using reflectance spectra, photoluminescence spectra and afterglow decay curves. The cubic structure of the SrS phosphor is confirmed by XRD analysis and the crystallite size calculated by Scherer's formula using XRD data shows the nanocrystalline nature of the phosphors. No phase change is observed with increasing concentrations of Ce3+ ions. The surface morphology of the prepared phosphors is determined by FESEM, which shows a sphere‐like structure and good connectivity of the grains. The authenticity of the formation of nanocrystalline phosphors is examined by HRTEM analysis. Elemental compositional information for the prepared phosphors is gathered by EDX analysis. Photoluminescence studies reveal that the emission spectra of the prepared phosphor shows broad band emission centered at 458 and 550 nm due to the transition of electrons from the 5d → 4f energy levels. The afterglow decay characteristics of different as‐synthesized SrS:Ce3+ nanophosphors are conceptually described. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na2SeO3 as the Se source by a rapid and room temperature photochemical (UV‐assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV–visible (UV–vis) spectroscopy, Fourier transform‐infrared (FT‐IR), and energy dispersive X‐ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round‐shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2T2 acceptor levels of Cu2+. The emission was increased by increasing the Cu2+ ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%.  相似文献   

9.
Here, five different samples of neodymium (Nd) incorporated 3D‐mesoporous siliceous materials were fabricated using a single‐step hydrothermal technique. Typically, all samples were subjected to several qualitative elemental and quantitative analyses such as X‐ray diffraction, N2‐adsorption/desorption, scanning electron microscopy, energy dispersive X‐ray, mapping, high resolution transmission electron microscopy, diffuse reflectance ultraviolet–visible, and Raman spectroscopy. The characterization results showed that at small loading of Nd (i.e. Si/Nd < 20), only isolated centres of trivalent neodymium ions were tetrahedrally coordinated in the TUD‐1 matrix. However, with increasing neodymium loading, additional nanoparticles of neodymium oxide with size 10–20 nm were embedded into silica host pores. Detailed photoluminescence (PL) analysis of all samples was carried out by recording the emission profiles at two diverse excitation wavelengths, 333 and 343 nm, to understand the effect of the Nd3+ environment on the PL emission spectra with special attention to the area between 400 and 600 nm. Most importantly, different peaks of the emission spectrum of each sample exhibited a distinct shape based on the Nd3+ environment. This performance was superior evidence that PL can be applied as a simple and efficient characterization tool to understand the nature of Nd3+ ion linkage with a silica matrix.  相似文献   

10.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Copper sulfide and zinc sulfide nanostructures were synthesized using a solvo/hydrothermal method and a thio Schiff base ligand, N‐benzylidene ethanethioamide, as a source of sulfide ions. The effects of different synthesis parameters including the type of solvent, temperature, and duration of reactions on the morphology of the CuS and ZnS products were investigated using field emission scanning microscopy and transmission electron microscopy, respectively. The structural aspects of the samples were characterized using powder X‐ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X‐ray analysis. The optical properties of the samples were studied through their optical absorption and photoluminescence spectra. The photocatalytic ability of the as‐synthesized sulfides was explored by studying the colour removal of methylene blue under ultraviolet light irradiation.  相似文献   

13.
Biocompatible ZnS microspheres with an average diameter of 3.85 µm were grown by solvo‐hydrothermal (S‐H) method using water–acetonitrile–ethylenediamine (EDA) solution combination. ZnS microspheres were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), high‐resolution transmission electron microscopy (HRTEM), Fourier transform (FT)‐Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) techniques. The broad photoluminescence (PL) emissions from 380–580 nm that were seen from the ZnS microspheres attributed to the increase in carrier concentration, as understood from the observed intense Raman band at 257 cm–1. Cytotoxicity and haemocompatibility investigations of these ZnS microspheres revealed its biocompatibility. ZnS microspheres, along with biological cell lines, were giving visible light emission and could be used for bioimaging applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, the effect of bismuth oxide (Bi2O3) content on the structural and optical properties of 0.5Sm3+‐doped phosphate glass and the effect of concentration on structural and optical properties of Sm3+‐doped bismuth phosphate (BiP) glass were studied. Structural characterization was accomplished using X‐ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy and 31P nuclear magnetic resonance (NMR) spectroscopy. Optical properties were studied using absorption, photoluminescence and decay measurements. Using optical absorption spectra, Judd–Ofelt parameters were derived to determine the local structure and bonding in the vicinity of Sm3+ ions. The emission spectra of Sm3+‐doped BiP glass showed two intense emission bands, 4G5/26H7/2 (orange) and 4G5/26H9/2 (red) for which the stimulated emission cross‐sections (σe) and branching ratios (β) were found to be higher. The quantum efficiencies were also calculated from decay measurements recorded for the 4G5/2 level of Sm3+ ions. The suitable combination of Bi2O3 (10 mol%) and Sm3+ (0.5 mol%) ions in these glasses acted as an efficient lasing material and might be suitable for the development of visible orange‐red photonic materials.  相似文献   

15.
This study reports the structural and optical properties of CdS/ZnTiO3 nanocomposites prepared using a chemical bath and different titanate concentrations. Commercial ZnTiO3 nanoparticles were introduced into a chemical bath that had been used to produce CdS semiconductor nanoparticles (NPs). Here, the growing CdS crystallites precipitated onto the suspended zinc titanate NPs. X‐ray diffraction patterns revealed that samples of CdS/ZnTiO3 nanopowders were made of cubic ZnTiO3 and hexagonal CdS wurtzite. The morphology of the particles was studied using transmission electron microscopy and scanning electron microscopy images. These images demonstrated the different characteristics of the CdS/ZnTiO3 nanocomposites and their dependence on titanate concentration when placed into the CdS‐growing solution. Photoluminescence spectra showed three main emission bands for the electron transitions in the CdS/ZnTiO3 composite. This composite produced three photoluminescence bands, the intensities of which depended on composite shape, which in turn depended on the relative concentrations of CdS and ZnTiO3.  相似文献   

16.
Chitosan/alginate multilayers were fabricated using a spin‐coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X‐ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende‐structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV–vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu‐doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Using a hydrothermal method, Ce3+/Tb3+ non‐/single‐/co‐doped K‐Lu‐F materials have been synthesized. The X‐ray diffraction (XRD) results suggest that the Ce3+ and/or Tb3+ doping had great effects on the crystalline phases of the final samples. The field emission scanning electron microscopy (FE‐SEM) images indicated that the samples were in hexagonal disk or polyhedron morphologies in addition to some nanoparticles, which also indicated that the doping also had great effects on the sizes and the morphologies of the samples. The energy‐dispersive spectroscopy (EDS) patterns illustrated the constituents of different samples. The enhanced emissions of Tb3+ were observed in the Ce3+/Tb3+ co‐doped K‐Lu‐F materials. The energy transfer (ET) efficiency ηT were calculated based on the fluorescence yield. The ET mechanism from Ce3+ to Tb3+ was confirmed to be the dipole–quadrupole interaction inferred from the theoretical analysis and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper reports the synthesis and characterization of 2‐(4‐ethoxyphenyl)‐4‐phenyl quinoline (OEt‐DPQ) organic phosphor using an acid‐catalyzed Friedlander reaction and the preparation of blended thin films by molecularly doping OEt‐DPQ in poly(methyl methacrylate) (PMMA) at different wt%. The molecular structure of the synthesized phosphor was confirmed by Fourier transform infra‐red (FTIR) spectroscopy and nuclear magnetic resonance spectra (NMR). Surface morphology and percent composition of the elements were assessed by scanning electron microscopy (SEM) and energy dispersive analysis of X‐rays (EDAX). The thermal stability and melting point of OEt‐DPQ and thin films were probed by thermo‐gravimetric analysis (TGA)/differential thermal analysis (DTA) and were found to be 80°C and 113.6°C, respectively. UV–visible optical absorption spectra of OEt‐DPQ in the solid state and blended films produced absorption bands in the range 260–340 nm, while photoluminescence (PL) spectra of OEt‐DPQ in the solid state and blended thin films demonstrated blue emission that was registered at 432 nm when excited at 363–369 nm. However, solvated OEt‐DPQ in chloroform, tetrahydrofuran or dichloromethane showed a blue shift of 31–43 nm. Optical absorption and emission parameters such as molar extinction coefficient (ε), energy gap (Eg), transmittance (T), reflectance (R), refractive index (n), oscillator energy (E0) and oscillator strength (f), quantum yield (φf), oscillator energy (E0), dispersion energy (Ed), Commission Internationale de l'Éclairage (CIE) co‐ordinates and energy yield fluorescence (EF) were calculated to assess the phosphor's suitability as a blue emissive material for opto‐electronic applications such as organic light‐emitting diodes (OLEDs), flexible displays and solid‐state lighting technology.  相似文献   

19.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号