首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel and sensitive chemiluminescence (CL) procedure based on the synergetic catalytic effects of gold nanoclusters (Au NCs) and graphene quantum dots (GQDs) was developed for the reliable measurement of cimetidine (CM). The initial experiments showed that the KMnO4‐based oxidation of alkaline rhodamine B (RhoB) generated a very weak CL emission, which was intensively enhanced in the simultaneous presence of Au NCs and GQDs. CL intermediates can be adsorbed and gathered on the surface of Au NCs, becoming more stable. GQDs participate in the energy transferring processes and facilitate them. These improving effects were simultaneously obtained by adding both Au NCs and GQDs into the RhoB‐KMnO4 reaction. Consequently, the increasing effect of the Au NCs/GQDs mixture was more than that of pure Au NCs or GQDs, and a new nano‐assisted powerful CL system was achieved. Furthermore, a marked quenching in the emission of the introduced CL system was observed in the presence of CM, so the system was examined to design a sensitive sensor for CM. After optimization of influencing parameters, the linear lessening in CL emission intensity of KMnO4‐RhoB‐Au NCs/GQDs was verified for CM concentrations in the range 0.8–200 ng ml?1. The limit of detection (3Sb/m) was 0.3 ng ml?1. Despite being a simple CL method, good sensitivity was obtained for CM detection with reliable results for CM determination in human urine samples.  相似文献   

2.
We report on a simple and sensitive sulfur and nitrogen co‐doped carbon quantum dot (S,N‐CQD)‐based chemiluminescence (CL) sensor for the determination of indomethacin. S,N‐CQDs were prepared by a hydrothermal method and characterized by fluorescence spectra, Fourier transform infrared spectroscopy and transmission electron microscopy. To obtain the best CL system for determination of indomethacin, the reaction of S,N‐CQDs with some common oxidants was studied. Among the tested systems, the S,N‐CQD–KMnO4 reaction showed the highest sensitivity for the detection of indomethacin. Under optimum conditions, the calibration plot was linear over a concentration range of 0.1–1.5 mg L?1, with a limit of detection (3σ) of 65 μg L?1. The method was applied to the determination of indomethacin in environmental and biological samples with satisfactory results.  相似文献   

3.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Ultra‐weak chemiluminescence (CL) from the reaction of iodide and KMnO4 was strongly enhanced by carbon nanodots (CNDs) in an acidic medium. The CL intensity was directly proportional to the concentration of iodide in the solution. Therefore, a flow‐injection CL system with high sensitivity, selectivity and reproducibility is proposed for the determination of iodide. The proposed method exhibited advantages over a linear range of 3.0 × 10?6–1.0 × 10?4 mol/L and had a detection limit of 3.5 × 10?7 mol/L. The method was successfully applied to the evaluation of iodide in food samples with recoveries of between 96 and 103%. The relative standard deviations were 2.1 and 4.1% for intra‐ and inter‐assay precision, respectively.  相似文献   

5.
This article suggests a new sequential injection analysis chemiluminescence (SIA‐CL) strategy for monitoring the caffeine (CAF) content in soft and energy drinks using the catalytic activities of different nano‐metal oxides. The present study describes three different SIA‐CL systems (luminol–ferricyanide (III) coupled with Fe2O3 or ZnO nanoparticles (NPs), and luminol–H2O2 coupled with CuONPs. All experimental conditions were optimized and the linear concentration ranges of pure CAF were evaluated using the calibration graphs. The selectivity of the developed SIA‐CL systems was studied under the influence of various interfering species that may be present in soft or energy drinks such as sodium ions, sucrose, glucose, sodium benzoate, sodium citrate, riboflavin, niacin, citric, phosphoric and ascorbic acids. International Council for Harmonization (ICH) guidelines were obeyed for the validation of the suggested CL methods. The developed SIA‐CL systems displayed linear relationships over the concentration ranges 1.0–350, 5.0–400 and 10.0–400 μg ml?1 with Fe2O3 NPs, ZnO NPs and CuO NPs, respectively. The recorded lower limits of detection and quantification were 0.7, 2.7 and 7.8 μg ml?1, and 1.0, 5.0 and 10.0 μg ml?1 for the previously mentioned SIA‐CL systems. The results revealed high selectivity for CAF determination and were in good agreement with those obtained by other reported methods.  相似文献   

6.
A simple and highly selective on‐chip Ru(bpy)32+–oxidant chemiluminescence (CL) approach for estimation of a diuretic drug, hydrochlorothiazide (HCZ), in biological fluids was realized in the presence of other fixed‐dose combination drugs by manipulating simultaneously the method of active species (Ru(bpy)33+) production and type of carrier buffer with pH used for the CL reaction. Chemical oxidation processes involved in the Ru(bpy)32+–Ce(IV) CL system have been successfully miniaturised in this study using a microfabricated device to generate Ru(bpy)33+ instantaneously. The proposed system was then screened using HCZ and other drugs in the presence of various buffers and pH to explore the difference in CL emission. Ammonium formate buffer (0.15 M) at pH 4.5 exhibited excellent selectivity towards HCZ when Ru(bpy)33+ was produced by chemical oxidation using Ce(IV). The newly developed conditions do not involve any kind of prior separation or isolation procedure to remove other combination therapy drugs in formulation and biological samples. The method under fully optimised conditions exhibited wide linearity over the concentration range 0.5–1000 ng ml?1 and low detection and quantification limits of 0.13 and 0.47 ng ml?1 respectively for HCZ. Acceptable levels of recoveries were obtained for HCZ from human plasma using the proposed method (98.9–100.8%) in the presence of other antihypertensive combination therapy drugs. This study postulates that such miniaturised devices may find applications especially for on‐site analysis, such as doping control examinations.  相似文献   

7.
A high‐yield chemiluminescence (CL) system based on the alkaline permanganate–Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4. There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2–300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Qiyong Zhu 《Luminescence》2009,24(4):250-254
Based on the inhibition effect of rutin on the luminol–hydrogen peroxide chemiluminescence (CL) system catalyzed by tetrasulfonated colbalt phthalocyanine (CoTSPc), a sensitive flow‐injection CL method has been developed for the determination of rutin. The CL reaction mechanism was carefully investigated by examining CL emission spectra, UV–visible spectra and variation of reaction conditions. It was found that there existed a linear relationship between CL intensity and the concentration of rutin in the range of 8.0 × 10?9 to 1.0 × 10?6 mol L?1, and the detection limit is 3.8 × 10?9 mol L?1. This proposed method is sensitive, convenient and simple, and has been applied to the determination of rutin in commercial rutin tablets with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe3O4@SiO2 magnetic nanoparticles (Fe–MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe–MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA‐CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe–MNPs (amine‐functionalized Fe3O4@SiO2 and carboxylic acid‐functionalized Fe3O4@SiO2). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC50) values of the two methods were about 0.024 ng ml?1 and 0.046 ng ml?1 respectively and LODs were approximately 0.0002 ng ml?1 and 0.001 ng ml?1 respectively. These methods were much more sensitive than that of any traditional enzyme‐linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe–MNPs.  相似文献   

11.
A novel galangin–potassium permanganate (KMnO4)–polyphosphoric acid (PPA) system was found to have an outstanding response to tryptophan (Trp). Trp determination using this KMnO4–PPA system was enhanced significantly in the presence of galangin. A highly sensitive flow‐injection chemiluminescence (CL) method to determine Trp was developed based on the CL reaction of galangin–KMnO4–Trp in PPA media. The presence of galangin, a member of the flavonol class of flavonoid complexes, greatly increased the luminous intensity of Trp in KMnO4–PPA systems. Under optimized conditions, Trp was determined in the 0.05–10 µg/mL range, with a detection limit (3σ) of 5.0 × 10?3 µg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 µg/mL Trp. Two synthetic samples were determined selectively with recoveries of 98.4–100.1% in the presence of other amino acids. The possible mechanism is summarized as follows: excited states of Mn(II)* and Mn(III * types are the main means of generating chemical luminescent species, and Trp concentration and luminescence intensity have a linear relationship, which enables quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and ultrasensitive flow injection chemiluminescence competitive immunoassay based on gold nanoparticle‐loaded enzyme for the detection of chloramphenicol (CAP) residues in shrimp and honey has been developed. Due to their good biocompatibility and large specific surface area, carboxylic resin beads can be used as solid phase carriers to immobilize more coating antigens (Ag). In addition, gold nanoparticles could provide an effective matrix for loading more CAP antibody and horseradish peroxidase, which would effectively catalyze the system of luminol–p‐iodophenol (PIP)–H2O2. A competitive immunoassay strategy was used for detection of CAP, in which CAP in the sample would compete with the coating Ag for the limited antibodies, leading to a chemiluminescence (CL) signal decrease with increase in CAP concentration. A wide linear range 0.001–10 ng ml?1 (R2 = 0.9961) was obtained under optimized conditions, and the detection limit (3σ) was calculated to be 0.33 pg ml?1. This method was also been successfully applied to determine CAP in shrimp and honey samples. The immunosensor proposed in this study not only has the advantages of high sensitivity, wider linear range, and satisfactory stability, but also expands the application of flow injection CL immunoassay in antibiotic detection.  相似文献   

13.
Taking advantage of the compelling properties of d ‐penicillamine (d ‐PA) combined with copper, a method for the sensitive and selective determination of d ‐PA was established using copper nanocluster (Cu NC)‐based fluorescence enhancement. d ‐PA molecules containing a thiol compound showed a strong tendency to combine with the surface of Cu NCs, causing the re‐dispersion of nanoclusters and therefore fluorescence intensity was enhanced. Fluorescence enhancement efficiency of Cu NCs induced by d ‐PA was linear, with the d ‐PA concentration varying from 0.6–30 μg ml?1 (R2 = 0.9952) and with a detection limit of 0.54 μg ml?1. d ‐PA content in human urine samples was detected with recoveries of 104.8–112.99%. Fluorescence‐enhanced determination of d ‐PA using Cu NCs was established for the first time and this rapid, easy and sensitive method should attract much attention for this application.  相似文献   

14.
The chemiluminescence (CL) behaviour of the luminol–potassium periodate system enhanced by CdTe quantum dots capped with thioglycolic acid (TGA–CdTe QDs) was studied using kinetic experiments, CL spectra, UV–vis absorption spectra and fluorescence spectra. The production of oxygen‐containing reactant intermediates (O2?? and OH?) in the present CL system was verified by CL. The possible CL mechanism was discussed in detail. Furthermore, theophylline (THP) was determined based on its enhancement of the CL intensity of the CdTe QDs–luminol–potassium periodate system coupled with a flow‐injection technique. Under these optimized conditions, the linear range was found to be from 1.0 × 10?8 to 1.0 × 10?5 g/mL with a detection limit of 2.8 × 10?9 g/mL (3σ). The recoveries for the determination of THP in tablets were from 98.2 to 99.6%.  相似文献   

15.
Lu Han  Ying Li  Aiping Fan 《Luminescence》2018,33(4):751-758
Peroxidase is a commonly used catalyst in luminol–H2O2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol–H2O2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol–H2O2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1O2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis.  相似文献   

16.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A pharmacokinetic study of oxytetracycline (OTC) following a single (100 mg kg?1) or a multi‐dose (100 mg kg?1 for 5 days) oral administration was carried out in yellow catfish, Pelteobagrus fulvidraco. After oral administration at 25°C, a one‐compartment model was developed. The absorption half‐life (t1/2(ka)) was 3.92, 1.44, 2.75, and 3.34 h in plasma, muscle, liver, and kidney after the single dose, and 0.35, 0.22, 0.42, 0.32 h after the multi‐dose, respectively. The order of peak concentration (Cmax) was liver > kidney > plasma > muscle, at 3.48 μg g?1, 2.90 μg g?1, 1.46 μg ml?1, and 1.39 μg g?1 after the single dose, and 14.02 μg g?1, 8.51 μg g?1, 4.17 μg ml?1, and 3.84 μg g?1 after the multi‐dose, respectively. The elimination half‐lives (t1/2(ke)) of OTC in plasma, muscle, liver, and kidney were calculated to be 7.64, 26.29, 19.08, and 10.61 h after the single dose, and 47.54, 70.99, 49.87, and 47.73 h after the multi‐dose, respectively. The results suggest that OTC was absorbed faster after the multi‐dose than after the single dose, suggesting that OTC could be more efficacious after the multi‐dose and more effective in the control bacterial diseases in aquaculture, with the side effects of longer withdrawal periods.  相似文献   

19.
Here, we have presented a green and facile strategy to fabricate nitrogen‐doped carbon dots (N‐CDs) and their applications for determination of chlortetracycline (CTC) and sulfasalazine (SSZ). The fluorescent N‐CDs, prepared by one‐step hydrothermal reaction of citric acid and l ‐arginine, manifested numerous excellent features containing strong blue fluorescence, good water‐solubility, narrow size distribution, and a high fluorescence quantum yield (QY) of 38.8%. Based on the fluorescence quenching effects, the as‐synthesized N‐CDs as a fluorescent nanosensor exhibited superior analytical performances for quantifying CTC and SSZ. The linear range for CTC was calculated to be from 0.85 to 20.38 μg ml?1 with a low detection limit of 0.078 μg ml?1. Meanwhile, the linear range for SSZ was estimated to be from 0.34 to 6.76 μg ml?1 with a low detection limit of 0.032 μg ml?1. Therefore, the N‐CDs hold admirable application potential for constructing a fluorescent sensor for pharmaceutical analysis.  相似文献   

20.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号