首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for quantitative analysis of nitrite was achieved based on fluorescence quenching of graphene quantum dots. To obtain reliable results, the effects of pH, temperature and reaction time on this fluorescence quenching system were studied. Under optimized conditions, decrease in fluorescence intensity of graphene quantum dots (F0/F) showed a good linear relationship with nitrite concentration between 0.007692–0.38406 mmol/L and 0.03623–0.13043 μmol/L; the limits of detection were 9.8 μmol/L and 5.4 nmol/L, respectively. Variable temperature experiments, UV absorption spectra and thermodynamic calculations were used to determine the quenching mechanism, and indicated that it was an exothermic, spontaneous dynamic quenching process. This method was used to analyse urine samples, and showed that it could be applied to analyse biological samples.  相似文献   

2.
In this study, we demonstrated a highly sensitive, selective, and reversible chemosensor for Hg2+ determination. This chemosensor was synthesized by direct condensation of thymin‐1‐ylacetic acid with zinc tetraaminoporphyrin, which has a porphyrin core as the fluorophore and four thymine (T) moieties as the specific interaction sites for Hg2+. The probe (4T‐ZnP) exhibited split Soret bands with a small peak at 408 nm and a strong band at 429 nm in a dimethylformamide/H2O (7/3, v/v) mixed solvent as well as a strong emission band at 614 nm. Upon the addition of Hg2+, the probe displayed strong fluorescence quenching due to the formation of T‐Hg2+‐T complexes. With the aid of the fluorescence spectrometer, the chemosensor in the dimethylformamide/H2O (7/3, v/v) mixed solvent (0.3 μM) exhibited a detection limit of 6.7 nM. Interferences from other common cations, such as Co2+, K+, Sn2+, Zn2+, Cu2+, Ni2+, Mn2+, Na+, Ca2+, Mg2+, Pb2+, and Cd2+, associated with Hg2+ analysis were effectively inhibited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Zhi Chen 《Luminescence》2016,31(4):965-971
Zinc oxide nanoparticles doped with bovine serum albumin were used to determine histidine in aqueous solutions using a fluorescence spectroscopic technique. The results showed that histidine effectively quenched the fluorescence of the modified ZnO nanoparticles, whereas other amino acids did not significantly affect the light emission, thereby allowing selective and sensitive histidine detection in amino acid mixtures. Under optimal conditions (pH 7.0, 25 °C, 10 min preincubation), the detection limit for histidine was ~ 9.87 × 10–7 mol/L. The high value of the determined quenching rate constant Kq (3.30 × 1013 L/mol/s) was consistent with a static quenching mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.  相似文献   

5.
Quantification of erythrocyte zinc protoporphyrin IX (ZnPP) and protoporphyrin IX (PPIX), individually or jointly, is useful for the diagnostic evaluation of iron deficiency, iron‐restricted erythropoiesis, lead exposure, and porphyrias. A method for simultaneous quantification of ZnPP and PPIX in unwashed blood samples is described, using dual‐wavelength excitation to effectively eliminate background fluorescence from other blood constituents. In blood samples from 35 subjects, the results of the dual‐wavelength excitation method and a reference high performance liquid chromatography (HPLC) assay were closely correlated both for ZnPP (rs = 0.943, p < 0.0001; range 37–689 μmol ZnPP/mol heme, 84–1238 nmol/L) and for PPIX (rs = 0.959, p < 0.0001; range 42–4212 μmol PPIX/mol heme, 93–5394 nmol/L). In addition, for ZnPP, the proposed method is compared with conventional single‐wavelength excitation and with commercial front‐face fluorimetry of washed erythrocytes and whole blood. We hypothesize that dual‐wavelength excitation fluorimetry will provide a new approach to the suppression of background fluorescence in blood and tissue measurements of ZnPP and PPIX. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A series of naphthaldehyde‐2‐pyridinehydrazone derivatives were discovered to display interesting ‘turn‐on’ fluorescence response to Zn2+ in 99% water/DMSO (v/v) at pH 7.0. Mechanism study indicated that different substituent groups in the naphthaldehyde moiety exhibited significant influence on the detection of Zn2+. The electron rich group resulted in longer fluorescence wavelengths but smaller fluorescence enhancement for Zn2+. Among these compounds, 1 showed the highest fluorescence enhancement of 19‐fold with the lowest detection limit of 0.17 μmol/L toward Zn2+. The corresponding linear range was at least from 0.6 to 6.0 μmol/L. Significantly, 1 showed an excellent selectivity toward Zn2+ over other metal ions including Cd2+.  相似文献   

7.
A terbium‐sensitized spectrofluorimetric method has been developed for determination of catecholamines such as norepinephrine (NE), epinephrine (EP) and dopamine (DA), using sodium dodecyl benzene sulphonate (SDBS). Fluorescence sensitization of terbium ions (Tb3+) by complexation with catecholamines in the presence of SDBS was observed. The fluorescence intensities of the Tb3+–catecholamine complexes were highly enhanced by introducing SDBS with an emission maximum at 545 nm after excitation at 290 nm. The conditions for the complex formation of Tb3+–catecholamine were investigated systematically and optimized to determine catecholamines in a serum sample. Under the optimum conditions, the fluorescence intensities of the Tb3+–catecholamine complexes were increased linearly with the concentration of NE, EP and DA over the ranges 2.5 × 10–10–1.0 × 10–8, 2.5 × 10–10–1.0 × 10–8 and 2.5 × 10–9–1.0 × 10–7 g/mL with correlation coefficients of 0.999, 0.999 and 0.9996, respectively. The limits of detection (3δ) of NE, EP and DA were found to be 4.6 × 10–11, 7.8 × 10–11 and 8.38 × 10–10 g/mL, respectively. Precision of the method was tested at the concentration level of 1.2 × 10?7 g/mL for five replicate measurements of NE, EP and DA, giving relative standard deviations (RSDs) of 1.41%, 1.23% and 1.89%, respectively. The interaction mechanism of the Tb3+–catecholamine complexes system was investigated and presented with ultraviolet absorption spectra. The proposed method has been applied for the quantitative determination of NE, EP and DA in a spiked serum sample and a pharmaceutical preparation sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This work proposed a rapid and novel fluorescence‐sensing system using a complex of acridine orange (AO) and polystyrene sulfonate (PSS) to sensitively recognize and monitor cetyltrimethylammonium bromide (CTAB) in an aqueous medium. AO can interact with PSS and a complex is formed via electrostatic attraction and hydrophobic interaction. The fluorescence of AO is greatly quenched after the introduction of PSS. Upon its subsequent addition, CTAB can interact and form a complex with PSS because the electrostatic attraction between CTAB and PSS is much stronger than that between AO and PSS, which results in significant fluorescence recovery. Interestingly, the proposed method can be applied for the discrimination and detection of surfactants with different hydrocarbon chain lengths due to their different binding affinity toward PSS. The detection limit for CTAB is as low as 0.2 µg/mL and the linear range is from 0.5 to 3.5 µg/mL. Moreover, we applied the sensor to the successful detection of CTAB in water samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Time‐correlated single photon counting is the “gold‐standard” method for fluorescence lifetime measurements and has demonstrated potential for clinical deployment. However, the translation of the technology into clinic is hindered by the use of ultrasensitive detectors, which make the fluorescence acquisition impractical with bright lighting conditions such as in clinical settings. We address this limitation by interleaving periodic fluorescence detection with synchronous out‐of‐phase externally modulated light source, thus guaranteeing specimen illumination and a fluorescence signal free from bright background light upon temporal separation. Fluorescence lifetime maps are generated in real‐time from single‐point measurements by tracking a reference beam and using the phasor approach. We demonstrate the feasibility and practicality of this technique in a number of biological specimens, including real‐time mapping of degraded articular cartilage. This method is compatible and can be integrated with existing clinical microscopic, endoscopic and robotic modalities, thus offering a new pathway towards label‐free diagnostics and surgical guidance in a number of clinical applications.  相似文献   

10.
The present paper describes the development and validation of a simple and sensitive micelle‐enhanced high‐throughput fluorometric method for the determination of niclosamide (NIC) in 96‐microwell plates. The proposed method is based on the reduction of the nitro group of niclosamide to an amino group using Zn/HCl to give a highly fluorescent derivative that was developed simultaneously and measured at λem 444 nm after excitation at λex 275 nm. Tween‐80 and carboxymethylcellulose (CMC) have been used as fluorescence enhancers and greatly enhanced the fluorescence by factors of 100–150%. The different experimental conditions affecting the fluorescence reaction were carefully investigated and optimized. The proposed method showed good linearity (r2≥ 0.9997) over the concentration ranges of 1–5 and 0.5–5 μg/ml with lower detection limits of 0.01 and 0.008 μg/ml and lower quantification limits of 0.04 and 0.03 μg/ml on using Tween‐80 and or CMC, respectively. The developed high‐throughput method was successfully applied for the determination of niclosamide in both tablets and spiked plasma. The capability of the method for measuring microvolume samples made it convenient for handling a very large number of samples simultaneously. In addition, it is considered an environmentally friendly method with lower consumption of chemicals and solvents.  相似文献   

11.
A rapid, simple and sensitive label‐free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water‐soluble glutathione‐capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X‐ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione‐capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0–200.0 ng mL?1 with a low limit of detection, 2.0 ng mL?1. The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A novel, rapid and sensitive spectroflurimetric method was developed and validated for the determination of deferasirox in urine, serum and tablet samples based on sensitization of terbium fluorescence. The excitation and emission wavelengths were 328 and 545 nm, respectively. The optimum conditions for the determination of deferasirox were investigated considering the effects of various parameters. The method was quantitatively evaluated in terms of linearity, recovery, reproducibility and limit of detection. Under the optimal conditions, the fluorescence intensities were linear with the concentration of deferasirox in the range of 5 × 10?9 to 5×10?6 mol L?1, with a detection limit of 1.5 × 10?9 mol L?1 and a relative standard deviation of 1.1–2.3%. Linearity, reproducibility, recovery and limit of detection made the method suitable for determination of deferasirox in urine, serum and tablets samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This study was performed in order to evaluate a new LED‐based 2D‐fluorescence spectrometer for in‐line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10‐L fed‐batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D‐fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed‐batch process was used for model validation and prediction. An almost continuous in‐line bioprocess monitoring was realized because 2D‐fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D‐fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D‐fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures.  相似文献   

15.
A high‐performance liquid chromatographic method with fluorescence detection was developed and validated for the determination of gemifloxacin in human breast milk. The proposed method allows the determination of gemifloxacin in breast milk samples without complex sample preparation. The samples were mixed with a mobile phase and filtered with a 0.45 µm polytetrafluoroethylene filter before analysis. Chromatographic separation was carried out on a C18 column (150 × 4.6 mm, 5 µm I.D.) using methanol:50 mM ortho‐phosphoric acid solution (40:60) as the mobile phase with a 1.0 mL/min flow rate. Quantitation was performed using fluorescence detection with an excitation wavelength at 272 nm and an emission wavelength at 395 nm. The linear range was found to be 0.1–2.5 µg/mL. The method was applied successfully for the determination of gemifloxacin in breast milk obtained from a breastfeeding mother after oral administration of a single tablet that included 320 mg gemifloxacin per gemifloxacin tablet. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Matrix metalloproteinase (MMP)‐2 and ‐9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP‐2 and ‐9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time‐resolved laser‐induced fluorescence spectroscopy (TR‐LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP‐2 and ‐9 content in the atherosclerotic plaque cap using a label‐free imaging technique implemented with a fiberoptic TR‐LIFS system. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The hydrazinium reduction technique has so far been inapplicable to the determination of nitrate in brackish water and seawater due to interference from magnesium ions. We developed a pretreatment method for brackish water and seawater samples for the determination of nitrate based on the hydrazinium reduction technique. Magnesium ions in water samples were converted to a precipitate of a complex with oxine (8-quinolinol) at pH 9.5, and then the precipitate was centrifuged at 3000 rpm for 20 min. The extra oxine in the resulting sample (the supernatant liquid), which inhibits the reduction of nitrate to nitrite, was removed using a Sep-Pak C18 cartridge. Thus we achieved the preparation of a magnesium-free water sample. Using the hydrazinium reduction technique with the proposed pretreatment method, nitrate in brackish water and seawater as well as fresh water was quantitatively determined with high accuracy. Received: July 21, 1999 / Accepted: September 26, 1999  相似文献   

18.
The substrate chain of double‐stranded DNA (dsDNA) could be specifically cleaved by Pb2+ to release single‐stranded DNA (ssDNA) that adsorbs onto the AuPd nanoalloy (AuPdNP) to form a stable AuPdNP–ssDNA complex, but the dsDNA can not protect AuPdNPs in large AuPdNP aggregates (AuPdNPA) under the action of NaCl. AuPdNP–ssDNA and large AuPdNPA could be separated by centrifugation. On increasing the concentration of Pb2+, the amount of released ssDNA increased; AuPdNP–ssDNA increased in the centrifugation solution exhibiting a catalytic effect on the slow reaction of rhodamine 6G (Rh6G) and NaH2PO2, which led to fluorescence quenching at 552 nm. The decrease in fluorescence intensity (ΔF) was linear to the concentration of Pb2+ within the range 0.33–8.00 nmol/L, with a detection limit of 0.21 nmol/L. The proposed method was applied to detect Pb2+ in water samples, with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A new two‐dimensional fluorescence sensor system was developed for in‐line monitoring of mammalian cell cultures. Fluorescence spectroscopy allows for the detection and quantification of naturally occurring intra‐ and extracellular fluorophores in the cell broth. The fluorescence signals correlate to the cells’ current redox state and other relevant process parameters. Cell culture pretests with twelve different excitation wavelengths showed that only three wavelengths account for a vast majority of spectral variation. Accordingly, the newly developed device utilizes three high‐power LEDs as excitation sources in combination with a back‐thinned CCD‐spectrometer for fluorescence detection. This setup was first tested in a lab design of experiments study with process relevant fluorophores proving its suitability for cell culture monitoring with LOD in the μg/L range. The sensor was then integrated into a CHO‐K1 cell culture process. The acquired fluorescence spectra of several batches were evaluated using multivariate methods. The resulting batch evolution models were challenged in deviating and “golden batch” validation runs. These first tests showed that the new sensor can trace the cells’ metabolic state in a fast and reliable manner. Cellular distress is quickly detected as a deviation from the “golden batch”.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号