首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Retroviral Gag protein plays a critical role during the late stage of virus budding and possesses a so‐called L‐domain containing PT/SAP, PPxY, YxxL or FPIV motifs that are critical for efficient budding. Mason–Pfizer monkey virus (M‐PMV) contains PSAP, PPPY, and YADL sequences in Gag. This study was performed to investigate the roles of these three L‐domain‐like sequences in virus replication in three different cell lines, 293T, COS‐7 and HeLa cells. It was found that the PPxY motif plays an essential role in progeny virus production as a major L‐domain in all three cell lines. The PSAP sequence was shown to function as an additional L‐domain in HeLa cells and to promote efficient release of M‐PMV; however, this sequence was dispensable for M‐PMV production in 293T and COS‐7 cells, suggesting that the role of the PSAP motif as an L‐domain in M‐PMV budding is cell type‐dependent. Viruses possessing multiple L‐domains appear to change the L‐domain usage to replicate in various cells. On the other hand, the YADL motif was required for M‐PMV production as a transport signal of Gag to the plasma membrane, but not as an L‐domain.  相似文献   

3.
Currently, among multiple comparison procedures for dependent groups, a bootstrap‐t with a 20% trimmed mean performs relatively well in terms of both Type I error probabilities and power. However, trimmed means suffer from two general concerns described in the paper. Robust M‐estimators address these concerns, but now no method has been found that gives good control over the probability of a Type I error when sample sizes are small. The paper suggests using instead a modified one‐step M‐estimator that retains the advantages of both trimmed means and robust M‐estimators. Yet another concern is that the more successful methods for trimmed means can be too conservative in terms of Type I errors. Two methods for performing all pairwise multiple comparisons are considered. In simulations, both methods avoid a familywise error (FWE) rate larger than the nominal level. The method based on comparing measures of location associated with the marginal distributions can have an actual FWE that is well below the nominal level when variables are highly correlated. However, the method based on difference scores performs reasonably well with very small sample sizes, and it generally performs better than any of the methods studied in Wilcox (1997b).  相似文献   

4.
5.
This review point out several aspects regarding the mitogen‐activated protein kinase (MAPK)/extracellular‐regulated kinase (Erk) network, which are still pending issues in the understanding how this pathway integrate information to drive cell fates. Focusing on the role of Erk during cell cycle, it has to be underlined that Erk downstream effectors, which are required for mitosis progression and contribute to aneuploidy during tumorigenesis, remain to be determined. In addition to the identity of the terminal enzymes or effectors of Erk, it has to be stressed that the dynamic nature of the Erk signal is itself a key factor in cell phenotype decisions. Development of biophotonics strategies for monitoring the Erk network at the spatiotemporal level in living cells, as well as computational and hypothesis‐driven approaches, are called to unravel the principles by which signaling networks create biochemical and biological specificities. Finally, Erk dynamics might also be impacted by other post‐translational modification than phosphorylation, such as O‐GlcNAcylation. J. Cell. Biochem. 109: 850–857, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
Macrophages play key roles in the secondary injury stage of spinal cord injury (SCI). M1 macrophages occupy the lesion area and secrete high levels of inflammatory factors that hinder lesion repair, and M2 macrophages can secrete neurotrophic factors and promote axonal regeneration. The regulation of macrophage secretion after SCI is critical for injury repair. Low‐level laser therapy (810‐nm) (LLLT) can boost functional rehabilitation in rats after SCI; however, the mechanisms remain unclear. To explore this issue, we established an in vitro model of low‐level laser irradiation of M1 macrophages, and the effects of LLLT on M1 macrophage polarization and neurotrophic factor secretion and the related mechanisms were investigated. The results showed that LLLT irradiation decreased the expression of M1 macrophage‐specific markers, and increased the expression of M2 macrophage‐specific markers. Through forward and reverse experiments, we verified that LLLT can promote the secretion of various neurotrophic factors by activating the PKA‐CREB pathway in macrophages and finally promote the regeneration of axons. Accordingly, LLLT may be an effective therapeutic approach for SCI with clinical application prospects.  相似文献   

9.
10.
Plexins are receptors for axonal guidance molecules known as semaphorins. We recently reported that the semaphorin 4D (Sema4D) receptor, Plexin‐B1, induces axonal growth cone collapse by functioning as an R‐Ras GTPase activating protein (GAP). Here, we report that Plexin‐B1 shows GAP activity for M‐Ras, another member of the Ras family of GTPases. In cortical neurons, the expression of M‐Ras was upregulated during dendritic development. Knockdown of endogenous M‐Ras—but not R‐Ras—reduced dendritic outgrowth and branching, whereas overexpression of constitutively active M‐Ras, M‐Ras(Q71L), enhanced dendritic outgrowth and branching. Sema4D suppressed M‐Ras activity and reduced dendritic outgrowth and branching, but this reduction was blocked by M‐Ras(Q71L). M‐Ras(Q71L) stimulated extracellular signal‐regulated kinase (ERK) activation, inducing dendrite growth, whereas Sema4D suppressed ERK activity and down‐regulation of ERK was required for a Sema4D‐induced reduction of dendrite growth. Thus, we conclude that Plexin‐B1 is a dual functional GAP for R‐Ras and M‐Ras, remodelling axon and dendrite morphology, respectively.  相似文献   

11.
12.
13.
14.
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N‐terminal ectodomain and the C‐terminal cytoplasmic tail remains largely unknown. Using two‐dimensional (2D) magic‐angle‐spinning solid‐state NMR, we have investigated the secondary structure and dynamics of full‐length M2 (M2FL) and found them to depend on the membrane composition. In 2D 13C DARR correlation spectra, 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)‐bound M2FL exhibits several peaks at β‐sheet chemical shifts, which result from water‐exposed extramembrane residues. In contrast, M2FL bound to cholesterol‐containing membranes gives predominantly α‐helical chemical shifts. Two‐dimensional J‐INADEQUATE spectra and variable‐temperature 13C spectra indicate that DMPC‐bound M2FL is highly dynamic while the cholesterol‐containing membranes significantly immobilize the protein at physiological temperature. Chemical‐shift prediction for various secondary‐structure models suggests that the β‐strand is located at the N‐terminus of the DMPC‐bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain‐truncated M2(21–97), which no longer exhibits β‐sheet chemical shifts in the DMPC‐bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol‐rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the β‐strand location suggests that chemical‐shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.  相似文献   

15.
16.
17.
18.
19.
20.
Aflatoxins are potential food pollutants produced by fungi. One of important toxins is aflatoxin M1 (AFM1). A great deal of concern is associated with AFM1 toxicity. In the present study, an innovative electrochemical interface for quantitation of AFM1 based on ternary signal amplification strategy was fabricated. In this work, silver nanoparticles was electrodeposited onto green and biocompatible nanocomposite containing α‐cyclodextrin as conductive matrix and graphene quantum dots as amplification element. Therefore, a multilayer film based on α‐cyclodextrin, graphene quantum dots, and silver nanoparticles was exploited to develop a highly sensitive electrochemical sensor for detection of AFM1. Fully electrochemical methodology was used to prepare a transducer on a glassy carbon electrode, which provided a high surface area toward sensitive detection of AFM1. The surface morphology of electrode surface was characterized by high‐resolution field emission scanning electron microscope. The proposed sensing platform provides a simple tool for AFM1 detection. Under optimized condition, the calibration curve for AFM1 concentration was linear in 0.015mM to 25mM with low limit of quantification of 2μM. The practical analytical utility of the modified electrode was illustrated by determination of AFM1 in unprocessed milk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号