首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
鞘翅目昆虫核酸分子系统学研究现状   总被引:1,自引:0,他引:1  
张迎春  付景 《昆虫知识》2006,43(2):169-176
从研究对象、研究种类、研究内容等方面对鞘翅目Coleoptera核酸分子系统学研究的近况进行了总结和分析,研究中应用的技术主要有DNA序列分析、RELP技术、RAPD技术、AFLP技术、分子杂交技术和SSCD技术。并认为这些技术的应用对补充和完善传统分类方法,深入探讨各类群的分类地位和系统发育关系具有重要作用。  相似文献   

2.
3.
Less than a decade old, single-molecule fluorescence of nucleic acids has rapidly become an important tool in the arsenal of biological probes. A variety of novel approaches to investigate conformational dynamics, catalytic mechanisms, folding pathways and protein-nucleic-acid interactions have recently been devised for nucleic acids using this technique. Combined with biomechanical tools and ensemble measurements, single-molecule fluorescence methods extend our ability to observe and understand biomolecules and complex biological processes.  相似文献   

4.
To assess the accuracy of the molecular dynamics (MD) models of nucleic acids, a detailed comparison between MD-calculated and NMR-observed indices of the dynamical structure of DNA in solution has been carried out. The specific focus of our comparison is the oligonucleotide duplex, d(CGCGAATTCGCG)(2), for which considerable structural data have been obtained from crystallography and NMR spectroscopy. An MD model for the structure of d(CGCGAATTCGCG)(2) in solution, based on the AMBER force field, has been extended with a 14 ns trajectory. New NMR data for this sequence have been obtained in order to allow a detailed and critical comparison between the calculated and observed parameters. Observable two-dimensional (2D) nuclear Overhauser effect spectroscopy (NOESY) volumes and scalar coupling constants were back-calculated from the MD trajectory and compared with the corresponding NMR data. The comparison of these results indicate that the MD model is in generally good agreement with the NMR data, and shows closer accord with experiment than back-calculations based on the crystal structure of d(CGCGAATTCGCG)(2) or the canonical A or B forms of the sequence. The NMR parameters are not particularly sensitive to the known deficiency in the AMBER MD model, which is a tendency toward undertwisting of the double helix when the parm.94 force field is used. The MD results are also compared with a new determination of the solution structure of d(CGCGAATTCGCG)(2) using NMR dipolar coupling data.  相似文献   

5.
Nanocontraction flows of liquid short-chain polyethylene ([CH2]50) that were uniformly extruded by a constant-speed piston into a surrounding vacuum from a reservoir through an abrupt contraction nozzle were performed by employing molecular dynamics simulations. The extrudate exhibits a similar die swell phenomenon around the exit of the nozzle. In addition, numerous molecular chains are strongly adsorbed on the external surface of the nozzle. At high extrusion speeds, the velocity and temperature profiles in the nozzle show convex and concave parabolic curves, respectively, whereas the profiles are relatively flat at lower speeds. Near the internal boundary of the nozzle, the wall slip is inspected. Significantly, during the flow, the molecular chains undergo structural deformation, including compressed, stretched and shrunk motions. Comparisons with related experimental observations show that the simulated probability distributions of the bending and dihedral angles, and variations of the squared radius of gyration and orientations, are in reasonable agreement.  相似文献   

6.
A refinement protocol based on physics‐based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge‐based or implicit membrane‐based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid‐facing residues. Scoring with knowledge‐based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane‐based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.  相似文献   

7.
The local segmental dynamics of cis-1,4-polybutadiene, polypropylene and polyethylene terephthalate have been investigated via isothermal-isobaric molecular dynamics simulations. The simulation pressure was 1 atm for all systems, with all simulation temperatures being at least 150 K above the polymer's glass transition temperature. The trajectories have been analysed via autocorrelation functions (ACFs) of chord vectors spanning different number of chain backbone bonds. Inverse Laplace transformations of these ACFs using the CONTIN algorithm afforded the corresponding distribution of relaxation times (DRTs) for the simulated dynamics. All DRTs illustrated a peak on fast timescales corresponding to short length scale segmental motion and a peak at longer timescales corresponding to longer length scale relaxations. A third peak, intermediate between the fast and slow processes, appears as the relaxation of chord vectors spanning increasing number of backbone bonds is considered. The temperature dependence of the relaxation dynamics is also investigated.  相似文献   

8.
Mocci F  Saba G 《Biopolymers》2003,68(4):471-485
Molecular dynamics simulations have been employed to probe the sequence-specific binding of sodium ions to the minor groove of B-DNA of three A. T-rich oligomers having identical compositions but different orders of the base pairs: C(AT)(4)G, CA(4)T(4)G, and CT(4)A(4)G. Recent experimental investigations, either in crystals or in solution, have shown that monovalent cations bind to DNA in a sequence-specific mode, preferentially in the narrow minor groove regions of uninterrupted sequences of four or more adenines (A-tracts), replacing a water molecule of the ordered hydration structure, the hydration spine. Following this evidence, it has been hypothesized that in A-tracts these events may be responsible for structural peculiarities such as a narrow minor groove and a curvature of the helix axis. The present simulations confirm a sequence specificity of the binding of sodium ions: Na(+) intrusions in the first layer of hydration of the minor groove, with long residence times, up to approximately 3 ns, are observed only in the minor groove of A-tracts but not in the alternating sequence. The effects of these intrusions on the structure of DNA depend on the ion coordination: when the ion replaces a water molecule of the spine, the minor groove becomes narrower. Ion intrusions may also disrupt the hydration spine modifying the oligomer structure to a large extent. However, in no case intrusions were observed to locally bend the axis toward the minor groove. The simulations also show that ions may reside for long time periods in the second layer of hydration, particularly in the wider regions of the groove, often leading to an opening of the groove.  相似文献   

9.
A novel approach to the design of sensitive fluorescent probes for nucleic acids detection is proposed. Suitable modifications of tri- and pentamethine cyanine dyes in the polymethine chain and/or in the heterocyclic residues can result in a significant decrease in unbound dye fluorescence intensity and an increase in dye emission intensity in the presence of DNA compared to the unsubstituted dye. The sharp enhancement in the fluorescence intensity upon dye interaction with double-stranded DNA permits the application of the modified tri- and pentamethine dyes as fluorescent probes in double-stranded DNA detection in homogeneous assays.  相似文献   

10.
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.  相似文献   

11.
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of ∼ 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain.  相似文献   

12.
Calcium ions (Ca2+) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca2+ models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca2+ models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA–DNA interactions. In the simulations performed using the two standard models, Ca2+ ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca2+ ions in the simulations of Ca2+‐mediated DNA–DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter‐DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca2+ to DNA phosphate is strong enough to affect the direction of the electric field‐driven translocation of DNA through a solid‐state nanopore. To address these shortcomings of the standard Ca2+ model, we introduce a custom model of a hydrated Ca2+ ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca2+ can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752–763, 2016.  相似文献   

13.
Silk materials are receiving significant attention as base materials for various functional nanomaterials and nanodevices, due to its exceptionally high mechanical properties, biocompatibility, and degradable characteristics. Although crystalline silk regions are composed of various repetitive motifs with differing amino acid sequences, how the effect of humidity works differently on each of the motifs and their structural characteristics remains unclear. We report molecular dynamics (MD) simulations on various silkworm fibroins composed of major motifs (i.e. (GAGAGS)n, (GAGAGA)n, and (GAGAGY)n) at varying degrees of hydration, and reveal how each major motifs of silk fibroins change at each degrees of hydration using MD simulations and their structural properties in mechanical perspective via steered molecular dynamics simulations. Our results explain what effects humidity can have on nanoscale materials and devices consisting of crystalline silk materials.  相似文献   

14.
15.
Peptide nucleic acids (PNA) were synthesized by a modified Merrifield method using several improvements. Activation by O-(benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate in combination with in situ neutralization of the resin allowed efficient coupling of all four Boc-protected PNA monomers within 30 min. HPLC analysis of the crude product obtained from a fully automated synthesis of the model PNA oligomer H-CGGACTAAGTCCATTGC-Gly-NH2, indicated an average yield per synthetic cycle of 97.1%. N1-benzyloxycarbonyl-N63-methylimidazole triflate substantially outperformed acetic anhydride as a capping reagent. The resin-bound PNAs were successfully cleaved by the ‘low–high’ trifluoromethanesulphonic acid procedure.  相似文献   

16.
In this review I discuss straightforward and general methods to modify nucleic acid structure with disulfide cross-links. A motivating factor in developing this chemistry was the notion that disulfide bonds would be excellent tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide cross-linked hairpins and duplexes, higher order structures like triplexes, nonground-state conformations, and tRNAs. Since the cross-links form quantitatively by mild air oxidation and do not perturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids. © 1998 John Wiley & Sons, Inc. Biopoly 48: 83–96, 1998  相似文献   

17.
无胶筛分毛细管电泳分析小于1kb的核酸,其迁移率与碱基数的对数成线性关系,长度大于1kb核酸的迁移率不是仅由其分子大小决定。据此可推测小于1kb核酸片段的大小。采用不更换聚合物法分析核酸,迁移时间的变异系数小于1.3%,适于大量样本的快速测定。考虑温度对核酸迁移行为的影响时,观察到22℃时,柱效最高。电进样与压力进样相比,分析大于300bp核酸的柱效提高,但不适于定量分析。  相似文献   

18.
Serine proteases are involved in many fundamental physiological processes, and control of their activity mainly results from the fact that they are synthetized in an inactive form that becomes active upon cleavage. Three decades ago Martin Karplus's group performed the first molecular dynamics simulations of trypsin, the most studied member of the serine protease family, to address the transition from the zymogen to its active form. Based on the computational power available at the time, only high frequency fluctuations, but not the transition steps, could be observed. By performing accelerated molecular dynamics (aMD) simulations, an interesting approach that increases the configurational sampling of atomistic simulations, we were able to observe the N‐terminal tail insertion, a crucial step of the transition mechanism. Our results also support the hypothesis that the hydrophobic effect is the main force guiding the insertion step, although substantial enthalpic contributions are important in the activation mechanism. As the N‐terminal tail insertion is a conserved step in the activation of serine proteases, these results afford new perspective on the underlying thermodynamics of the transition from the zymogen to the active enzyme.  相似文献   

19.
20.
Thrombin is a key component for chemotherapeutic and antithrombotic therapy development. As the physiologic and pathologic roles of the light chain still remain vague, here, we continue previous efforts to understand the impacts of the disease-associated single deletion of LYS9 in the light chain. By combining supervised and unsupervised machine learning methodologies and more traditional structural analyses on data from 10 μs molecular dynamics simulations, we show that the conformational ensemble of the ΔK9 mutant is significantly perturbed. Our analyses consistently indicate that LYS9 deletion destabilizes both the catalytic cleft and regulatory functional regions and result in some conformational changes that occur in tens to hundreds of nanosecond scaled motions. We also reveal that the two forms of thrombin each prefer a distinct binding mode of a Na+ ion. We expand our understanding of previous experimental observations and shed light on the mechanisms of the LYS9 deletion associated bleeding disorder by providing consistent but more quantitative and detailed structural analyses than early studies in literature. With a novel application of supervised learning, i.e. the decision tree learning on the hydrogen bonding features in the wild-type and ΔK9 mutant forms of thrombin, we predict that seven pairs of critical hydrogen bonding interactions are significant for establishing distinct behaviors of wild-type thrombin and its ΔK9 mutant form. Our calculations indicate the LYS9 in the light chain has both localized and long-range allosteric effects on thrombin, supporting the opinion that light chain has an important role as an allosteric effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号