首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human mesenchymal stem cells tissue development in 3D PET matrices   总被引:5,自引:0,他引:5  
Human mesenchymal stem cells (hMSCs) are attractive cell sources for engineered tissue constructs with broad therapeutic potential. Three-dimensional (3D) hMSC tissue development in nonwoven poly(ethylene terephthalate) (PET) fibrous matrices was investigated. HMSCs were seeded onto 3D PET scaffolds and were cultured for over 1 month. Their proliferation rates were affected by seeding density but remained much lower than those of 2D controls. Compared to 2D surfaces, hMSCs grown in 3D scaffolds secreted and embedded themselves in an extensive ECM network composed of collagen I, collagen IV, fibronectin, and laminin. HMSCs were influenced by the orientation of adjacent PET fibers to organize the ECM proteins into highly aligned fibrils. We observed the increased expressions of alpha(2)beta(1) integrin but a slight decrease in the expression of alpha(5)beta(1) integrin in 3D compared to 2D culture and found that alpha(V)beta(3) was expressed only in 2D. Paxillin expression was down-regulated in 3D culture with a concomitant change in its localization patterns. We demonstrated the multi-lineage potentials of the 3D tissue constructs by differentiating the cells grown in the scaffolds into osteoblasts and adipocytes. Taken together, these results showed that hMSCs grown in 3D scaffolds display tissue development patterns distinct from their 2D counterparts and provide important clues for designing 3D scaffolds for developing tissue engineered constructs.  相似文献   

2.
考察了静态和动态接种方式对成纤维细胞在胶原壳聚糖支架材料中接种率和分布的影响。将人成纤维细胞制成细胞悬液,分别采用静态接种、转瓶接种和灌注接种方式将细胞接入三维胶原壳聚糖海绵。通过MTT法和切片HE染色分别考察细胞接种率及细胞在三维材料中的分布。实验结果表明:在低的接种密度下静态接种有较高的接种率(889%),但随着接种密度的增加接种率下降显著,细胞结团且分布不均匀;转瓶接种的接种率约为60%,细胞分布也不均匀;灌注接种的接种率始终维持在77%以上,能得到高的起始细胞密度,且细胞分布均匀,是一种理想的接种方式。细胞接种方式的优化为改善工程化组织的结构和功能、缩短体外构建时间奠定了基础。  相似文献   

3.
The cell seeding density and spatial distribution in a 3-D scaffold are critical to the morphogenetic development of an engineered tissue. A dynamic depth-filtration seeding method was developed to improve the initial cell seeding density and spatial distribution in 3-D nonwoven fibrous matrices commonly used as tissue scaffolds. In this work, trophoblast-like ED27 cells were seeded in poly(ethylene terephthalate) (PET) matrices with various porosities (0.85-0.93). The effects of the initial concentration of cells in the suspension used to seed the PET matrix and the pore size of the matrix on the resulting seeding density and subsequent cell proliferation and tissue development were studied. Compared to the conventional static seeding method, the dynamic depth-filtration seeding method gave a significantly higher initial seeding density (2-4 x 10(7) vs 4 x 10(6) cells/cm3), more uniform cell distribution, and a higher final cell density in the tissue scaffold. The more uniform initial cell spatial distribution from the filtration seeding method also led to more cells in S phase and a prolonged proliferation period. However, both uniform spatial cell distribution and the pore size of the matrices are important to cell proliferation and morphological development in the seeded tissue scaffold. Large-pore matrices led to the formation of cell aggregates and thus might reduce cell proliferation. The dynamic depth-filtration seeding method is better in providing a higher initial seeding density and more uniform cell distribution and is easier to apply to large tissue scaffolds. A depth-filtration model was also developed and can be used to simulate the seeding process and to predict the maximum initial seeding densities in matrices with different porosities.  相似文献   

4.
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell‐seeding methods, cell‐biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three‐dimensional (3‐D) structures and functions of the cell‐seeded scaffold in mesoscopic scale (>2 ~ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth‐resolved molecular characterization of engineered tissues in 3‐D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ.  相似文献   

5.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

6.
Cell seeding and attachment in three-dimensional scaffolds is a key step in tissue engineering with implications for cell differentiation and tissue development. In this work, two new seeding methods were investigated using human chondrocytes and polyglycolic acid (PGA) fibrous mesh scaffolds. A simple semi-static seeding method using culture plates and tissue flasks was developed as an easy-to-perform modification of static seeding. An alginate-loading method was also studied, using alginate hydrogel as an adjuvant for entrapping cells within PGA scaffolds. Both the semi-static and PGA-alginate methods produced more homogeneous cell distributions than conventional static and dynamic seeding. Using 20 × 10(6) cells, whereas the seeding efficiency for static seeding was only 52%, all other techniques produced seeding efficiencies of ≥ 90%. With 40 × 10(6) cells, the efficiency of semi-static seeding declined to 74% while the dynamic and PGA-alginate methods retained their ability to accommodate high cell numbers. The seeded scaffolds were cultured in recirculation bioreactors to determine the effect of seeding method on cartilage production. Statically seeded scaffolds did not survive the 5-week cultivation period. Deposition of extracellular matrix in scaffolds seeded using the semi-static and PGA-alginate methods was more uniform compared with scaffolds seeded using the dynamic method. The new semi-static and PGA-alginate seeding methods developed in this work are recommended for tissue engineering because they provide substantial benefits compared with static seeding in terms of seeding efficiency, cell distribution, and cartilage deposition while remaining simple and easy to execute.  相似文献   

7.
The seeding of cells onto biocompatible scaffolds is a determinant step in the attainment of functional properties of engineered tissues. Efficient, fast and spatially uniform cell seeding can improve the clinical potential of engineered tissue templates. One way to approach these cell seeding requirements is through bioreactor design. In the present study, bovine chondrocytes were seeded (2.5, 5.0 or 10.0 million cells per scaffold) onto polyglycolic acid scaffolds within the hydrodynamic environments of wavy-walled and spinner flask bioreactors. Previous characterizations of the hydrodynamic environment in the vicinity of constructs cultivated in these bioreactors suggested decreased flow-induced shear stress as well as increased recirculation and magnitude of the axial fluid velocities in the wavy-walled bioreactor. Here we report more efficient and spatially uniform cell seeding in the wavy-walled bioreactor, and at intermediate initial cell densities (5 million cells per scaffold). This study constitutes an important step towards the achievement of functional tissue-engineered implants by (i) increasing our understanding of the influence of hydrodynamic parameters on the efficiency and spatial distribution of cell attachment to scaffolds and the production of extracellular matrix and (ii) introducing a comprehensive approach to the investigation of the effects of bioprocessing conditions on tissue morphology and composition.  相似文献   

8.
Radial-flow perfusion bioreactor systems have been designed and evaluated to enable direct cell seeding into a three-dimensional (3-D) porous scaffold and subsequent cell culture for in vitro tissue reconstruction. However, one of the limitations of in vitro regeneration is the tissue necrosis that occurs at the central part of the 3-D scaffold. In the present study, tubular poly-L-lactic acid (PLLA) porous scaffolds with an optimized pore size and porosity were prepared by the lyophilization method, and the effect of different perfusion conditions on cell seeding and growth were compared with those of the conventional static culture. The medium flowed radially from the lumen toward the periphery of the tubular scaffolds. It was found that cell seeding under a radial-flow perfusion condition of 1.1 mL/cm2 x min was effective, and that the optimal flow rate for cell growth was 4.0 mL/cm2 x min. At this optimal rate, the increase in seeded cells in the perfusion culture over a period of 5 days was 7.3-fold greater than that by static culture over the same period. The perfusion cell seeding resulted in a uniform distribution of cells throughout the scaffold. Subsequently, the perfusion of medium and hence the provision of nutrients and oxygen permitted growth and maintenance of the tissue throughout the scaffold. The perfusion seeding/culture system was a much more effective strategy than the conventional system in which cells are seeded under a static condition and cultured in a bioreactor such as a spinner flask.  相似文献   

9.
The scaffolds for stem cell‐based bone tissue engineering should hold the ability to guide stem cells osteo‐differentiating. Otherwise, stem cells will differentiate into unwanted cell types or will form tumors in vivo. Alginate, a natural polysaccharide with great biocompatibility, was widely used in biomedical applications. However, the limited bioactivity and poor osteogenesis capability of pristine alginate hampered its further application in tissue engineering. In this work, a bone forming peptide‐1 (BFP‐1), derived from bone morphogenetic protein‐7, was grafted to alginate polymer chains to prepare peptide‐decorated alginate porous scaffolds (pep‐APS) for promoting osteo‐differentiation of human mesenchymal stem cells (hMSCs). SEM images of pep‐APS exhibited porous structure with about 90% porosity (pore size 100–300 μm), which was appropriate for hMSCs ingrowth. The adhesion, proliferation and aggregation of hMSCs grown on pep‐APS were enhanced in vitro. Moreover, pep‐APS promoted the alkaline phosphatase (ALP) activity of hMSCs, and the osteo‐related genes expression was obviously up‐regulated. The immunochemical staining and western blot analysis results showed high expression level of OCN and Col1a1 in the hMSCs grown on pep‐APS. This work provided a facile and valid strategy to endow the alginate polymers themselves with specific bioactivity and prepare osteopromoting scaffold with enhanced osteogenesis ability, possessing potential applications in stem cell therapy and regenerative medicine.  相似文献   

10.
We have explored the optimal seeding density and timing for transplantation of the tissue‐engineered bone with BMMSCs (bone marrow mesenchymal stem cells) and PDPB (partially deproteinized bone) in vitro. Rabbit BMMSCs of different densities were seeded into PDPB generated from fresh pig vertebrates to reconstruct tissue‐engineered bone in vitro. Adhesion and proliferation of BMMSCs were analysed by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide] assay from which growth curves of BMMSCs on the PDPB materials were generated. The data show that BMMSCs began to adhere to PDPB after 24 h of primary culture, all groups reaching peak growth on the 6th day, after which the value of A decreased gradually and reached a plateau phase. The optimal BMMSCs seeding density of 5×106/ml achieved an excellent adhesion and proliferation activity on PDPB. In summary, the best cell seeding density of constructing tissue‐engineered bone with BMMSCs in vitro is 5×106/ml, the optimal timing to transplant is the 6th day.  相似文献   

11.
12.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   

13.
The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced--stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced--induced for 2 weeks before seeding into scaffolds; and (3) uninduced--cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.  相似文献   

14.
Biodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are often used for reconstructive surgery to treat congenital cardiac anomalies. The long-term clinical results showed excellent patency rates, however, with significant incidence of stenosis. To investigate the cellular and molecular mechanisms of vascular neotissue formation and prevent stenosis development in tissue engineered vascular grafts (TEVGs), we developed a mouse model of the graft with approximately 1 mm internal diameter. First, the TEVGs were assembled from biodegradable tubular scaffolds fabricated from a polyglycolic acid nonwoven felt mesh coated with ε-caprolactone and L-lactide copolymer. The scaffolds were then placed in a lyophilizer, vacuumed for 24 hr, and stored in a desiccator until cell seeding. Second, bone marrow was collected from donor mice and mononuclear cells were isolated by density gradient centrifugation. Third, approximately one million cells were seeded on a scaffold and incubated O/N. Finally, the seeded scaffolds were then implanted as infrarenal vena cava interposition grafts in C57BL/6 mice. The implanted grafts demonstrated excellent patency (>90%) without evidence of thromboembolic complications or aneurysmal formation. This murine model will aid us in understanding and quantifying the cellular and molecular mechanisms of neotissue formation in the TEVG.  相似文献   

15.
Three‐dimensional (3D) cell cultures have many advantages over two‐dimensional cultures. However, seeding cells in 3D scaffolds such as nonwoven fibrous polyethylene terephthalate (PET) matrices has been a challenge task in tissue engineering and cell culture bioprocessing. In this study, a centrifugal seeding method was investigated to improve the cell seeding efficiency in PET matrices with two different porosities (93% and 88%). Both the centrifugal force and centrifugation time were found to affect the seeding efficiency. With an appropriate centrifugation speed, a high 80?90% cell seeding efficiency was achieved and the time to reach this high seeding efficiency was less than 5 min. The seeding efficiency was similar for matrices with different porosities, although the optimal seeding time was significantly shorter for the low‐porosity scaffold. Post seeding cell viability was demonstrated by culturing colon cancer cells seeded in PET matrices for over 5 days. The centrifugal seeding method developed in this work can be used to efficiently and uniformly seed small fibrous scaffolds for applications in 3D cell‐based assays for high‐throughput screening. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
Wendt D  Stroebel S  Jakob M  John GT  Martin I 《Biorheology》2006,43(3-4):481-488
In this work, we assessed whether culture of uniformly seeded chondrocytes under direct perfusion, which supplies the cells with normoxic oxygen levels, can maintain a uniform distribution of viable cells throughout porous scaffolds several milimeters in thickness, and support the development of uniform tissue grafts. An integrated bioreactor system was first developed to streamline the steps of perfusion cell seeding of porous scaffolds and perfusion culture of the cell-seeded scaffolds. Oxygen tensions in perfused constructs were monitored by in-line oxygen sensors incorporated at the construct inlet and outlet. Adult human articular chondrocytes were perfusion-seeded into 4.5 mm thick foam scaffolds at a rate of 1 mm/s. Cell-seeded foams were then either cultured statically in dishes or further cultured under perfusion at a rate of 100 microm/s for 2 weeks. Following perfusion seeding, viable cells were uniformly distributed throughout the foams. Constructs subsequently cultured statically were highly heterogeneous, with cells and matrix concentrated at the construct periphery. In contrast, constructs cultured under perfusion were highly homogeneous, with uniform distributions of cells and matrix. Oxygen tensions of the perfused medium were maintained near normoxic levels (inlet congruent with 20%, outlet > 15%) at all times of culture. We have demonstrated that perfusion culture of cells seeded uniformly within porous scaffolds, at a flow rate maintaining a homogeneous oxygen supply, supports the development of uniform engineering tissue grafts of clinically relevant thicknesses.  相似文献   

17.
The effect of dynamic mechanical shear and compression on the synthesis of human tissue‐engineered cartilage was investigated using a mechanobioreactor capable of simulating the rolling action of articular joints in a mixed fluid environment. Human chondrocytes seeded into polyglycolic acid (PGA) mesh or PGA–alginate scaffolds were precultured in shaking T‐flasks or recirculation perfusion bioreactors for 2.5 or 4 weeks prior to mechanical stimulation in the mechanobioreactor. Constructs were subjected to intermittent unconfined shear and compressive loading at a frequency of 0.05 Hz using a peak‐to‐peak compressive strain amplitude of 2.2% superimposed on a static axial compressive strain of 6.5%. The mechanical treatment was carried out for up to 2.5 weeks using a loading regime of 10 min duration each day with the direction of the shear forces reversed after 5 min and release of all loading at the end of the daily treatment period. Compared with shaking T‐flasks and mechanobioreactor control cultures without loading, mechanical treatment improved the amount and quality of cartilage produced. On a per cell basis, synthesis of both major structural components of cartilage, glycosaminoglycan (GAG) and collagen type II, was enhanced substantially by up to 5.3‐ and 10‐fold, respectively, depending on the scaffold type and seeding cell density. Levels of collagen type II as a percentage of total collagen were also increased after mechanical treatment by up to 3.4‐fold in PGA constructs. Mechanical treatment had a less pronounced effect on the composition of constructs precultured in perfusion bioreactors compared with perfusion culture controls. This work demonstrates that the quality of tissue‐engineered cartilage can be enhanced significantly by application of simultaneous dynamic mechanical shear and compression, with the greatest benefits evident for synthesis of collagen type II. Biotechnol. Bioeng. 2012; 109:1060–1073. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Novel bioengineering strategies for the ex vivo fabrication of native‐like tissue‐engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost‐effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone‐marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(?‐caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC–PCL constructs are then transferred to 3D‐extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8‐fold) in comparison to their non‐perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.  相似文献   

19.
The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development.  相似文献   

20.
Human mesenchymal stem cells (hMSCs) are an attractive tissue engineering avenue for the repair and regeneration of bone. In this study we detail the in vivo performance of a novel electrospun polycaprolactone scaffold incorporating the glycosaminoglycan heparan sulfate (HS) as a carrier for hMSC. HS is a multifunctional regulator of many key growth factors expressed endogenously during bone wound repair, and we have found it to be a potent stimulator of proliferation in hMSCs. To assess the potential of the scaffolds to support hMSC function in vivo, hMSCs pre-committed to the osteogenic lineage (human osteoprogenitor cells) were seeded onto the scaffolds and implanted subcutaneously into the dorsum of nude rats. After 6 weeks the scaffolds were retrieved and examined by histological methods. Implanted human cells were identified using a human nuclei-specific antibody. The host response to the implants was characterized by ED1 and ED2 antibody staining for monocytes/macrophages and mature tissue macrophages, respectively. It was found that the survival of the implanted human cells was affected by the host response to the implant regardless of the presence of HS, highlighting the importance of controlling the host response to tissue engineering devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号