共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavonols are plant pigments that are ubiquitous in nature. Quercetin (3,3',4',5,7-pentahydroxyflavone) and other related plant flavonols have come into recent prominence because of their usefulness as anticancer, antitumor, anti-AIDS, and other important therapeutic activities of significant potency and low systemic toxicity. Quercetin is intrinsically weakly fluorescent in aqueous solution, showing an emission maximum at approximately 538 nm. Upon binding to human serum albumin (HSA), quercetin undergoes dramatic enhancement in its fluorescence emission intensity, along with the appearance of dual emission behavior, consisting of normal and excited-state proton transfer (ESPT) fluorescence. In addition, the occurrence of a third emitting species has been noted for the first time. This is attributed to a electronic ground-state complex formed in the protein environment. High values of the fluorescence anisotropy (r) are obtained in the presence of HSA for the ESPT tautomer (r = 0.18), as well as the complex species (r = 0.37) of quercetin, indicating that the precursor ground-state molecules for both these emitting species of quercetin molecules are located in the motionally constrained sites of HSA. The steady-state emission data suggest that quercetin binds to two distinct sites in HSA from which the emissions from the normal tautomer and complex species take place. The preliminary results of studies on emission decay kinetics are also reported herein. Studies by far-UV circular dichroism spectroscopy reveal that binding of quercetin induces no significant perturbation in the secondary structure of HSA. 相似文献
2.
Investigation of the interaction of aurantio‐obtusin with human serum albumin by spectroscopic and molecular docking methods 下载免费PDF全文
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA). 相似文献
3.
Miklós Poór Sándor Kunsági‐Máté Zsuzsanna Czibulya Yin Li Beáta Peles‐Lemli József Petrik Sanda Vladimir‐Knežević Tamás Kőszegi 《Luminescence》2013,28(5):726-733
Ochratoxin A (OTA) is a highly toxic mycotoxin found worldwide in cereals, foods, animal feeds and different drinks. Based on previous studies, OTA is one of the major causes of the chronic tubulointerstitial nephropathy known as Balkan endemic nephropathy (BEN) and exerts several other adverse effects shown by cell and/or animal models. It is a well‐known fact that OTA binds to various albumins with very high affinity. Recently, a few studies suggested that reducing the bound fraction of OTA might reduce its toxicity. Hypothetically, certain drugs can be effective competitors displacing OTA from its albumin complex. Therefore, we examined 13 different drug molecules to determine their competing abilities to displace OTA from human serum albumin (HSA). Competitors and ineffective chemicals were identified with a steady‐state fluorescence polarization‐based method. After characterization the competitive abilities of individual drugs, drug pairs were formed and their displacing activity were tested in OTA‐HSA system. Indometacin, phenylbutazone, warfarin and furosemide showed the highest competing capacity but ibuprofen, glipizide and simvastatin represented detectable interaction too. Investigations of drug pairs raised the possibility of the presence of diverse binding sites of competing drugs. Apart from the chemical information obtained in our model, this explorative research might initiate future designs for epidemiologic studies to gain further in vivo evidence of long‐term (potentially protective) effects of competing drugs administered to human patients. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
5.
Miroslava Kameníková Paul Georg Furtmüller Mária Klacsová Arturo Lopez‐Guzman José Luis Toca‐Herrera Anika Vitkovská Ferdinand Devínsky Pavel Mučaji Milan Nagy 《Luminescence》2017,32(7):1203-1211
Protein‐binding interactions are displacement reactions which have been implicated as the causative mechanisms in many drug–drug interactions. Thus, the aim of presented study was to analyse human serum albumin‐binding displacement interaction between two ligands, hypoglycaemic drug gliclazide and widely distributed plant flavonoid quercetin. Fluorescence analysis was used in order to investigate the effect of substances on intrinsic fluorescence of human serum albumin (HSA) and to define binding and quenching properties of ligand–albumin complexes in binary and ternary systems, respectively. Both ligands showed the ability to bind to HSA, although to a different extent. The displacement effect of one ligand from HSA by the other one has been described on the basis of the quenching curves and binding constants comparison for the binary and ternary systems. According to the fluorescence data analysis, gliclazide presents a substance with a lower binding capacity towards HSA compared with quercetin. Results also showed that the presence of quercetin hindered the interaction between HSA and gliclazide, as the binding constant for gliclazide in the ternary system was remarkably lower compared with the binary system. This finding indicates a possibility for an increase in the non‐bound fraction of gliclazide which can lead to its more significant hypoglycaemic effect. Additionally, secondary and tertiary structure conformational alterations of HSA upon binding of both ligands were investigated using synchronous fluorescence, circular dichroism and FT‐IR. Experimental data were complemented with molecular docking studies. Obtained results provide beneficial information about possible interference upon simultaneous co‐administration of the food/dietary supplement and drug. 相似文献
6.
Interactions between quercetin and Warfarin for albumin binding: A new eye on food/drug interference
The interaction between quercetin, a popular antioxidant flavonoid, and human serum albumin (HSA) is investigated and characterized by means of induced circular dichroism and saturation transfer difference NMR. These techiques demonstrate the reversible binding of quercetin to the carrier protein, which is responsible for its dissolution in aqueous medium. Competition experiments with two classical probes for HSA binding sites, namely Ibuprofen and Warfarin (a common anticoagulant coumarin), demonstrate that quercetin has a primary binding site located in the subdomain IIA, where coumarins are hosted. The affinity for this site is large and we found that quercetin may effectively displace warfarin from HSA. This may have relevant consequences in rationalizing the interferences of common dietary compounds and food supplements to anticoagulant treatments. Chirality, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
7.
Leila Roufegarinejad Ryszard Amarowicz 《Journal of biomolecular structure & dynamics》2019,37(11):2766-2775
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.
Communicated by Ramaswamy H. Sarma 相似文献
8.
Yan Li Chun Chen Chunping Zhang Jingyu Duan Qunli Wei 《Journal of biomolecular structure & dynamics》2017,35(6):1189-1199
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator. 相似文献
9.
Quercetin (3,3',4',5,7-pentahydroxyflavone), a ubiquitous, bioactive plant flavonoid, is known to possess anti-cancer, anti-tumor, and other important therapeutic activities of significant potency and low systemic toxicity. In this communication, we report for the first time a study on the interactions of quercetin with the plasma protein human serum albumin (HSA), exploiting the intrinsic fluorescence emission properties of quercetin as a probe. Quercetin is weakly fluorescent in aqueous buffer medium, with an emission maximum at approximately 538 nm. Binding of quercetin with HSA leads to dramatic enhancement in the fluorescence emission intensity and anisotropy (r), along with significant changes in the fluorescence excitation and emission profiles. The excitation spectrum suggests occurrence of efficient F?rster type resonance energy transfer (FRET) from the single tryptophan-214 residue of HSA to the protein bound quercetin. The emission, excitation, and anisotropy (r=0.18 at [HSA]=30 microM) data (using the native protein) along with emission studies of quercetin using partially denatured HSA (by 8M urea) indicate that the quercetin molecules bind at a motionally restricted site near tryptophan-214 in the interdomain cleft region of HSA. Furthermore, the binding constant (K=1.9 x 10(5)M(-1)) and Gibbs free energy change (deltaG(0)=-30.12 kJ/mol)) for quercetin-HSA interaction have been calculated from the relevant anisotropy data. Implications of these results are examined, particularly in relation to prospective applications in biomedical research. 相似文献
10.
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 104 M?1implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases. 相似文献
11.
Co‐administration of several drugs in multidrug therapy may alter the binding of each to human serum albumin (HSA) and hence their pharmacological activity. Thirty‐two frequently prescribed drug combinations, consisting of four fluoroquinolone antibiotics and eight competing drugs, have been studied using fluorescence and circular dichroism spectroscopic techniques. Competitive binding studies on the drug combinations are not available in the literature. In most cases, the presence of competing drug decreased the binding affinity of fluoroquinolone, resulting in an increase in the concentration of free pharmacologically active drug. The competitive binding mechanism involved could be interpreted in terms of the site specificity of the binding and competing drugs. For levofloxacin, the change in the binding affinity was small because in the presence of site II‐specific competing drugs, levofloxacin mainly occupied site I. A competitive interference mechanism was operative for sparfloxacin, whereas competitive interference as well as site‐to‐site displacement of competing drugs was observed in the case of ciprofloxacin hydrochloride. For enrofloxacin, a different behavior was observed for different combinations; site‐to‐site displacement and conformational changes as well as independent binding has been observed for various drug combinations. Circular dichroism spectral studies showed that competitive binding did not cause any major structural changes in the HSA molecule. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
Investigation of binding properties of dicationic styrylimidazo[1,2‐a]pyridinium dyes to human serum albumin by spectroscopic techniques 下载免费PDF全文
Ayşe Özdemir Elmas Gökoğlu EsraYılmaz Ergin Yalçın Esra Gökoğlu Zeynel Seferoğlu Turgay Tekinay 《Luminescence》2017,32(1):86-92
The binding interaction between two dicationic styrylimidazo[1,2‐a]pyridinium dyes and human serum albumin (HSA) was investigated at physiological conditions using fluorescence, UV–vis absorption, and circular dichroism (CD) spectroscopies. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by these dyes was static. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that hydrogen bonding and van der Waals forces played a major role in the formation of the dye–HSA complex. Binding distances (r) between dyes and HSA were calculated according to Förster's non‐radiative energy transfer theory. Studies of conformational changes of HSA using CD measurements indicate that the α‐helical content of the protein decreased upon binding of the dyes. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Ghuman J Zunszain PA Petitpas I Bhattacharya AA Otagiri M Curry S 《Journal of molecular biology》2005,353(1):38-52
Human serum albumin (HSA) is an abundant plasma protein that binds a remarkably wide range of drugs, thereby restricting their free, active concentrations. The problem of overcoming the binding affinity of lead compounds for HSA represents a major challenge in drug development. Crystallographic analysis of 17 different complexes of HSA with a wide variety of drugs and small-molecule toxins reveals the precise architecture of the two primary drug-binding sites on the protein, identifying residues that are key determinants of binding specificity and illuminating the capacity of both pockets for flexible accommodation. Numerous secondary binding sites for drugs distributed across the protein have also been identified. The binding of fatty acids, the primary physiological ligand for the protein, is shown to alter the polarity and increase the volume of drug site 1. These results clarify the interpretation of accumulated drug binding data and provide a valuable template for design efforts to modulate the interaction with HSA. 相似文献
14.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104 M˗1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol−1 K−1 and ΔH = +13.09 kJ mol−1) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis. 相似文献
16.
The interaction of the cationic Gemini surfactant hexamethylene‐1,3‐bis (tetradecyldimethylammonium bromide) (14‐6‐14) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectra and three‐dimensional (3D) fluorescence spectra. The Stern–Volmer quenching constants KSV and the corresponding thermodynamic parameters ΔH, ΔG and ΔS have been estimated by the fluorescence quenching method. The results indicated that hydrophobic forces were the predominant intermolecular forces between BSA and the surfactant. Competitive experiments and the number of binding sites calculation show that 14‐6‐14 can be inserted in site‐II (in subdomain IIIA) of BSA. The effect of 14‐6‐14 on the conformation of BSA was evaluated by synchronous fluorescence spectroscopy and 3D fluorescence spectral methods. The results show that the conformation of BSA was changed dramatically in the presence of 14‐6‐14, by binding to the Trp and Try residues of BSA. The investigation provides interaction between BSA and 14‐6‐14 as a model for molecular design and industrial research. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
17.
Molecular interaction of some cardiovascular drugs with human serum albumin at physiological‐like conditions: A new approach 下载免费PDF全文
In the present study, the interaction of human serum albumin (HSA) with some cardiovascular drugs (CARs) under physiological conditions was investigated via the fluorescence spectroscopic and Fourier transform infrared spectroscopy. The CAR included Captopril, Timolol, Propranolol, Atenolol, and Amiodarone. Cardiovascular drugs can effectively quench the endogenous fluorescence of HSA by static quenching mechanism. The fluorescence quenching of HSA is mainly caused by complex formation of HSA with CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results showed that CAR strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and nonradiation energy transfer happened within molecules. Fourier transform infrared spectroscopy absorption studies showed that the secondary structure was changed according to the interaction of HSA and CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results obtained herein will be of biological significance in pharmacology and clinical medicines. 相似文献
18.
Mohd. Sajid Ali Musarat Amina Hamad A. Al‐Lohedan Nawal M. Al Musayeib 《Luminescence》2017,32(2):223-230
A sipholane triterpenoid, named sipholenone A, with anti‐cancer properties was isolated from the Red Sea sponge Siphonochalina siphonella and characterized by proton and carbon‐13 nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopies. The goal of this study was to visualize the binding of this triterpenoid with human serum albumin (HSA) and to determine its binding site on the biomacromolecule. The interaction was visualized using fluorescence quenching, synchronous fluorescence, far‐ and near‐UV circular dichroism (CD), UV–visible and Fourier transform‐infrared (FT‐IR) spectroscopies. UV–visible spectroscopy indicated the formation of a ground‐state complex as a result of the interaction. Sipholenone A quenches the fluorescence of HSA via a static quenching mechanism. A small blue shift in the fluorescence quenching profiles suggested the involvement of hydrophobic forces in the interaction. Sipholenone A binding takes place at site I of subdomain II A with a 1:1 binding ratio, as revealed by displacement binding studies using warfarin, ibuprofen and digitoxin. Far‐UV CD and FT‐IR studies showed that the binding of sipholenone A to HSA also had a small effect on the protein's secondary structure with a slight decrease in the α‐helical content. Several thermodynamic parameters were calculated, along with Forster's radiative energy transfer analysis. 相似文献
19.
Intermolecular interaction of fosinopril with bovine serum albumin (BSA): The multi‐spectroscopic and computational investigation 下载免费PDF全文
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction. 相似文献
20.
Studies on the interaction between vincamine and human serum albumin: a spectroscopic approach 下载免费PDF全文
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献