首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity.

Methods

Cow''s milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy.

Results

Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice.

Conclusions

Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.  相似文献   

2.
Specific allergy vaccination is an efficient treatment for allergic disease; however, the development of safer vaccines would enable a more general use of the treatment. Determination of molecular structures of allergens and allergen-Ab complexes facilitates epitope mapping and enables a rational approach to the engineering of allergen molecules with reduced IgE binding. In this study, we describe the identification and modification of a human IgE-binding epitope based on the crystal structure of Bet v 1 in complex with the BV16 Fab' fragment. The epitope occupies approximately 10% of the molecular surface area of Bet v 1 and is clearly conformational. A synthetic peptide representing a sequential motif in the epitope (11 of 16 residues) did not inhibit the binding of mAb BV16 to Bet v 1, illustrating limitations in the use of peptides for B cell epitope characterization. The single amino acid substitution, Glu(45)-Ser, was introduced in the epitope and completely abolished the binding of mAb BV16 to the Bet v 1 mutant within a concentration range 1000-fold higher than wild type. The mutant also showed up to 50% reduction in the binding of human polyclonal IgE, demonstrating that glutamic acid 45 is a critical amino acid also in a major human IgE-binding epitope. By solving the three-dimensional crystal structure of the Bet v 1 Glu(45)-Ser mutant, it was shown that the change in immunochemical activity is directly related to the Glu(45)-Ser substitution and not to long-range structural alterations or collapse of the Bet v 1 mutant tertiary structure.  相似文献   

3.
Wheat is an important staple food and potent allergen source. Recently, we isolated a cDNA coding for wheat alpha-purothionin which is recognized by wheat food allergic patients at risk for severe wheat-induced allergy. The purpose of the present study was the biochemical, biophysical and IgE epitope characterization of recombinant alpha-purothionin. Synthetic genes coding for alpha-purothionin were expressed in a prokaryotic system using Escherichia coli and in a eukaryotic expression system based on baculovirus-infected Sf9-insect cells. Recombinant proteins were purified and characterized by SDS-PAGE, mass spectrometry, circular dichroism, chemical cross-linking and size exclusion chromatography. Five overlapping peptid were synthesized for epitope mapping. Alpha-purothionin-specific rabbit antibodies were raised to perform IgE-inhibition experiments and to study the resistance to digestion. The IgE reactivity of the proteins and peptides from ten wheat food allergic patients was studied in non-denaturing RAST-based binding assays. Alpha-purothionin was expressed in the prokaryotic (EcTri a 37) and in the eukaryotic system (BvTri a 37) as a soluble and monomeric protein. However, circular dichroism analysis revealed that EcTri a 37 was unfolded whereas BvTri a 37 was a folded protein. Both proteins showed comparable IgE-reactivity and the epitope mapping revealed the presence of sequential IgE epitopes in the N-terminal basic thionin domain (peptide1:KSCCRSTLGRNCYNLCRARGAQKLCAGVCR) and in the C-terminal acidic extension domain (peptide3:KGFPKLALESNSDEPDTIEYCNLGCRSSVC, peptide4:CNLGCRSSVCDYMVNAAADDEEMKLYVEN). Natural Tri a 37 was digested under gastric conditions but resistant to duodenal digestion. Immunization with EcTri a 37 induced IgG antibodies which recognized similar epitopes as IgE antibodies from allergic patients and inhibited allergic patients'' IgE binding. Reactivity to Tri a 37 does not require a folded protein and the presence of sequential IgE epitopes indicates that sensitization to alpha-purothionin occurs via the gut. Both allergens can be used for in-vitro diagnosis of wheat food allergy. The induction of blocking IgG antibodies suggests the usefulness for immunotherapy.  相似文献   

4.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

5.
Xiang P  Haas EJ  Zeece MG  Markwell J  Sarath G 《Planta》2004,220(1):56-63
Gly m Bd 28 K is a major soybean (Glycine max Merr.) glycoprotein allergen. It was originally identified as a 28 kDa polypeptide in soybean seed flour. However, the full-length protein is encoded by an open reading frame (ORF) of 473 amino acids, and contains a 23 kDa C-terminal polypeptide of as yet unknown allergenic and structural characteristics. IgE-binding (allergenic potential) of the Gly m Bd 28 K protein including the 23 kDa C-terminal portion as well as shorter fragments derived from the full-length ORF were evaluated using sera from soy-sensitive adults. All of these sera contained IgE that efficiently recognized the C-terminal region. Epitope mapping demonstrated that a dominant linear C-terminal IgE binding epitope resides between residues S256 and A270. Alanine scanning of this dominant epitope indicated that five amino acids, Y260, D261, D262, K264 and D266, contribute most towards IgE-binding. A model based on the structure of the subunit of soybean -conglycinin revealed that Gly m Bd 28 K contains two cupin domains. The dominant epitope is on the edge of the first -sheet of the C-terminal cupin domain and is present on a potentially solvent-accessible loop connecting the two cupin domains. Thus, the C-terminal 23 kDa polypeptide of Gly m Bd 28 K present in soy products is allergenic and apparently contains at least one immunodominant epitope near the edge of a cupin domain. This knowledge could be helpful in the future breeding of hypoallergenic soybeans.Abbreviations Ara h 1 Arachis hypogaea allergen 1 - Ara h 3 Arachis hypogaea allergen 3 - BCA Bicinchoninic acid - Gly m Bd 28 K Glycine max band 28 kDa allergen - Gly m Bd 30 K Glycine max band 30 kDa allergen - Gly m Bd 68 K Glycine max band 68 kDa allergen - IgE Immunoglobulin E  相似文献   

6.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

7.

Background

Cockroach allergy is strongly associated with asthma, and involves the production of IgE antibodies against inhaled allergens. Reports of conformational epitopes on inhaled allergens are limited. The conformational epitopes for two specific monoclonal antibodies (mAb) that interfere with IgE antibody binding were identified by X-ray crystallography on opposite sites of the quasi-symmetrical cockroach allergen Bla g 2.

Methodology/Principal Findings

Mutational analysis of selected residues in both epitopes was performed based on the X-ray crystal structures of the allergen with mAb Fab/Fab′ fragments, to investigate the structural basis of allergen-antibody interactions. The epitopes of Bla g 2 for the mAb 7C11 or 4C3 were mutated, and the mutants were analyzed by SDS-PAGE, circular dichroism, and/or mass spectrometry. Mutants were tested for mAb and IgE antibody binding by ELISA and fluorescent multiplex array. Single or multiple mutations of five residues from both epitopes resulted in almost complete loss of mAb binding, without affecting the overall folding of the allergen. Preventing glycosylation by mutation N268Q reduced IgE binding, indicating a role of carbohydrates in the interaction. Cation-π interactions, as well as electrostatic and hydrophobic interactions, were important for mAb and IgE antibody binding. Quantitative differences in the effects of mutations on IgE antibody binding were observed, suggesting heterogeneity in epitope recognition among cockroach allergic patients.

Conclusions/Significance

Analysis by site-directed mutagenesis of epitopes identified by X-ray crystallography revealed an overlap between monoclonal and IgE antibody binding sites and provided insight into the B cell repertoire to Bla g 2 and the mechanisms of allergen-antibody recognition, including involvement of carbohydrates.  相似文献   

8.
In many cases, patients allergic to birch pollen also show allergic reactions after ingestion of certain fruits or vegetables. This observation is explained at the molecular level by cross-reactivity of IgE antibodies induced by sensitization to the major birch pollen allergen Bet v 1 with homologous food allergens. As IgE antibodies recognize conformational epitopes, a precise structural characterization of the allergens involved is necessary to understand cross-reactivity and thus to develop new methods of allergen-specific immunotherapy for allergic patients. Here, we report the three-dimensional solution structure of the soybean allergen Gly m 4, a member of the superfamily of Bet v 1 homologous proteins and a cross-reactant with IgE antibodies originally raised against Bet v 1 as shown by immunoblot inhibition and histamine release assays. Although the overall fold of Gly m 4 is very similar to that of Bet v 1, the three-dimensional structures of these proteins differ in detail. The Gly m 4 local structures that display those differences are also found in proteins from yellow lupine with known physiological function. The three-dimensional structure of Gly m 4 may thus shed some light on the physiological function of this subgroup of PR10 proteins (class 10 of pathogenesis-related proteins) and, in combination with immunological data, allow us to propose surface patches that might represent cross-reactive epitopes.  相似文献   

9.
Human type 1 immediate allergic response symptoms are caused by mediator release from basophils and mast cells. This event is triggered by allergens aggregating preformed IgE Abs bound to the high-affinity receptor (FcepsilonRI) on these cells. Thus, the allergen/IgE interaction is crucial for the cascade leading to the allergic and anaphylactic response. Two genetically engineered forms of the white birch pollen major allergen Bet v 1 with point mutations directed at molecular surfaces have been characterized. Four and nine point mutations led to a significant reduction of the binding to human serum IgE, suggesting a mutation-induced distortion of IgE-binding B cell epitopes. In addition, the mutated allergens showed a decrease in anaphylactic potential, because histamine release from human basophils was significantly reduced. Retained alpha-carbon backbone folding pattern of the mutated allergens was indicated by x-ray diffraction analysis and circular dichroism spectroscopy. The rBet v 1 mutants were able to induce proliferation of T cell lines derived from birch pollen allergic patients. The stimulation indices were similar to the indices of nonmutated rBet v 1 and natural Bet v 1 purified from birch pollen. The ability of anti-rBet v 1 mutant specific mouse IgG serum to block binding of human serum IgE to rBet v 1 demonstrates that the engineered rBet v 1 mutants are able to induce Abs reactive with nonmodified Bet v 1. rBet v 1 mutants may constitute vaccine candidates with improved efficacy/safety profiles for safer allergy vaccination.  相似文献   

10.
Asp f 2, a 268 amino acid major allergen from Aspergillus fumigatus (Af) demonstrated nine linear IgE binding regions. It is not known whether any of these linear epitopes are also conformatory epitopes. Hence, we constructed deletion mutants of Asp f 2 devoid of one or more epitopes, and the IgE binding of these proteins with sera from patients with ABPA was compared with the full-length Asp f 2 expressed in E. coli and Pichia. The Pichia expressed protein reacted weakly with IgE, but strongly with IgG of ABPA sera compared to E. coli expressed Asp f 2. Weak IgE binding only was seen when the C-terminal or N-terminal was deleted, while depletion of both ends negated all reactivity. The monoclonal antibody IL-B8 and IgE and IgG of ABPA sera bound significantly to the Asp f 2 E-4 fragment indicating that the major B-cell epitope is located at the N-terminal end of Asp f 2.  相似文献   

11.
The knowledge of the structure function relationship of the allergen is essential to design allergenic variants with reduced IgE binding capacity but intact T cell reactivity. Asp f 2 is a major allergen from the fungus Aspergillus fumigatus and >90% of A. fumigatus-sensitized individuals displayed IgE binding to Asp f 2. In the present study, we evaluated the involvement of C-terminal cysteine residues in IgE binding conformation of Asp f 2. The deletion mutants were constructed by adding three C-terminal cysteines of the native Asp f 2 one at a time to the non-IgE binding Asp f 2 (68-203). The point mutants of Asp f 2 (68-268) with C204A and C257A substitutions were constructed to study the role of C-terminal cysteines in IgE binding. Immunological evaluation of reduced and alkylated Asp f 2 and its mutants were conducted to determine the contribution of free sulfhydryl groups as well as the disulfide bonds in allergen Ab interaction. Four-fold increase in IgE Ab binding of Asp f 2 (68-267) compared with Asp f 2 (68-266) and complete loss in IgE binding of C204A mutant of Asp f 2 (68-268) indicate the involvement of C(204) and C(267) in IgE binding conformation of Asp f 2. A significant reduction in IgE binding of wild and mutated Asp f 2 after reduction and alkylation emphasizes the importance of cysteine disulfide bonds in epitope Ab interaction. The hypoallergenic variants may be explored further to develop safe immunotherapeutic strategy for allergic disorders.  相似文献   

12.
Allergy is a common health problem worldwide, especially food allergy. Since B cell epitopes that are recognized by the IgE antibodies act as antigenic determinants for allergy, they play a vital role in diagnostics. Hence, knowledge of an IgE binding epitope in a protein is of particular interest for identifying allergenic proteins. Though IgE epitopes may be conformational or linear, identification of the later is useful especially in food allergens that undergo processing or digestion. Very few computational tools are available for the prediction of linear IgE epitopes. Here we report a prediction system that predicts the exact linear IgE epitope. Since our earlier study on linear B-cell epitope prediction demonstrated the effectiveness of using an exact epitope dataset (in contrast to epitope containing region datasets), the dataset in this study uses only experimentally verified exact IgE, IgG, IgM and IgA epitopes. Models for Support Vector Machine (SVM) and Random Forest (RF) were constructed adopting Dipeptide Deviation from the Expected mean (DDE) feature vector. Extensive validation procedures including five-fold cross validation and two different independent dataset tests have been performed to validate the proposed method, which achieved a balanced accuracy ranging from 74 to 78% with area under receiver operator curve greater than 0.8. Performance of the proposed method was observed to be better (accuracy difference of 16–28%) in comparison to the existing available method. The proposed method is developed as a standalone tool that could be used for predicting IgE epitopes as well as to be incorporated into any allergen prediction toolhttps://github.com/brsaran/BCIgePred.  相似文献   

13.
IgE-mediated allergy to fish is a frequent cause of severe anaphylactic reactions. Parvalbumin, a small calcium-binding protein, is the major fish allergen. We have recently isolated a cDNA coding for carp parvalbumin, Cyp c 1, and expressed in Escherichia coli a recombinant Cyp c 1 molecule, which contained most IgE epitopes of saltwater and freshwater fish. In this study, we introduced mutations into the calcium-binding domains of carp parvalbumin by site-directed mutagenesis and produced in E. coli three parvalbumin mutants containing amino acid exchanges either in one (single mutants; Mut-CD and Mut-EF) or in both of the calcium-binding sites (double mutant; Mut-CD/EF). Circular dichroism analyses of the purified derivatives and the wild-type allergen showed that Mut-CD/EF exhibited the greatest reduction of overall protein fold. Dot blot assays and immunoblot inhibition experiments performed with sera from 21 fish-allergic patients showed that Mut-CD/EF had a 95% reduced IgE reactivity and represented the derivative with the least allergenic activity. The latter was confirmed by in vitro basophil histamine release assays and in vivo skin prick testing. The potential applicability for immunotherapy of Mut-CD/EF was demonstrated by the fact that mouse IgG Abs could be raised by immunization with the mutated molecule, which cross-reacted with parvalbumins from various fish species and inhibited the binding of fish-allergic patients' IgE to the wild-type allergen. Using the hypoallergenic carp parvalbumin mutant Mut-CD/EF, it may be possible to treat fish allergy by immunotherapy.  相似文献   

14.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

15.
Allergenic proteins must crosslink specific IgE molecules, bound to the surface of mast cells and basophils, to stimulate an immune response. A structural understanding of the allergen–IgE interface is needed to predict cross‐reactivities between allergens and to design hypoallergenic proteins. However, there are less than 90 experimentally determined structures available for the approximately 1500 sequences of allergens and isoallergens cataloged in the Structural Database of Allergenic Proteins. To provide reliable structural data for the remaining proteins, we previously produced more than 500 3D models using an automated procedure, with strict controls on template choice and model quality evaluation. Here, we assessed how well the fold and residue surface exposure of 10 of these models correlated with recently published experimental 3D structures determined by X‐ray crystallography or NMR. We also discuss the impact of intrinsically disordered regions on the structural comparison and epitope prediction. Overall, for seven allergens with sequence identities to the original templates higher than 27%, the backbone root‐mean square deviations were less than 2 Å between the models and the subsequently determined experimental structures for the ordered regions. Further, the surface exposure of the known IgE epitopes on the models of three major allergens, from peanut (Ara h 1), latex (Hev b 2), and soy (Gly m 4), was very similar to the experimentally determined structures. For the three remaining allergens with lower sequence identities to the modeling templates, the 3D folds were correctly identified. However, the accuracy of those models is not sufficient for a reliable epitope mapping. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The crystal structure of a murine mAb, 4C3, that binds to the C-terminal lobe of the cockroach allergen Bla g 2 has been solved at 1.8 ? resolution. Binding of 4C3 involves different types of molecular interactions with its epitope compared with those with the mAb 7C11, which binds to the N-terminal lobe of Bla g 2. We found that the 4C3 surface epitope on Bla g 2 includes a carbohydrate moiety attached to Asn(268) and that a large number of Ag-Ab contacts are mediated by water molecules and ions, most likely zinc. Ab binding experiments conducted with an enzymatically deglycosylated Bla g 2 and a N268Q mutant showed that the carbohydrate contributes, without being essential, to the Bla g 2-4C3 mAb interaction. Inhibition of IgE Ab binding by the mAb 4C3 shows a correlation of the structurally defined epitope with reactivity with human IgE. Site-directed mutagenesis of the 4C3 mAb epitope confirmed that the amino acids Lys(251), Glu(233), and Ile(199) are important for the recognition of Bla g 2 by the 4C3 mAb. The results show the relevance of x-ray crystallographic studies of allergen-Ab complexes to identify conformational epitopes that define the antigenic surface of Bla g 2.  相似文献   

17.
There is no definite information available on the structural characteristics of IgE binding epitopes on allergenic molecules, although it is widely accepted that most of them are conformational. In the current study we aimed to characterize the IgE epitope of Bet v 1, the major birch pollen allergen, by the application of phage display peptide libraries. We purified IgE specific for Bet v 1 from allergic patients' sera to select mimotopes representing artificial IgE epitopes by biopanning of phage libraries. By linear alignment, it was not possible to attribute mimotope sequences to the primary structure of Bet v 1. We developed a computer-aided, 3-dimensional coarse-grained epitope search. The 3-dimensional search, followed by statistical analysis, revealed an exposed area on the Bet v 1 molecule (located between residues 9-22 and 104-123) as the IgE binding structure. The IgE epitope was located at a 30 A distance from a previously described IgG epitope and the respective mimotope, designated Bet mim E. Such mimotopes could potentially be used for the induction of IgG capable of interfering with the IgE/allergen interaction. To test this hypothesis, we immunized BALB/c mice with the phage-displayed Bet mim E. Immunizations resulted in the induction of Bet v 1-specific IgG, which was able to block the IgE binding to Bet v 1 in vitro. Based on these observations, we propose that immunotherapy with IgE mimotopes generated by biopannings result in formation of blocking IgG. We conclude that mimotope immunotherapy may represent a new and promising concept for treatment of type I allergic disease.  相似文献   

18.
The major shrimp allergen, tropomyosin, is an excellent model allergen for studying the influence of mutations within the primary structure on the allergenic potency of an allergen; Pen a 1 allows systematic evaluation and comparison of Ab-binding epitopes, because amino acid sequences of both allergenic and nonallergenic tropomyosins are known. Individually recognized IgE Ab-binding epitopes, amino acid positions, and substitutions critical for IgE Ab binding were identified by combinatorial substitution analysis, and 12 positions deemed critical were mutated in the eight major epitopes. The mutant VR9-1 was characterized with regard to allergenic potency by mediator release assays using sera from shrimp-allergic subjects and sera from BALB/c, C57BL/6J, C3H/HeJ, and CBA/J mice sensitized with shrimp extract using alum, cholera toxin, and Bordetella pertussis, as adjuvants. The secondary structure of VR9-1 was not altered; however, the allergenic potency was reduced by 90-98% measuring allergen-specific mediator release from humanized rat basophilic leukemia (RBL) cells, RBL 30/25. Reduced mediator release of RBL-2H3 cells sensitized with sera from mice that were immunized with shrimp extract indicated that mice produced IgE Abs to Pen a 1 and to the same epitopes as humans did. In conclusion, data obtained by mapping sequential epitopes were used to generate a Pen a 1 mutant with significantly reduced allergenic potency. Epitopes that are relevant for human IgE Ab binding are also major binding sites for murine IgE Abs. These results indicate that the murine model might be used to optimize the Pen a 1 mutant for future therapeutic use.  相似文献   

19.
Designer proteins deprived of its IgE-binding reactivity are being sought as a regimen for allergen-specific immunotherapy. Although shrimp tropomyosin (Met e 1) has long been identified as the major shellfish allergen, no immunotherapy is currently available. In this study, we aim at identifying the Met e 1 IgE epitopes for construction of hypoallergens and to determine the IgE inhibitory capacity of the hypoallergens. IgE-binding epitopes were defined by three online computational models, ELISA and dot-blot using sera from shrimp allergy patients. Based on the epitope data, two hypoallergenic derivatives were constructed by site-directed mutagenesis (MEM49) and epitope deletion (MED171). Nine regions on Met e 1 were defined as the major IgE-binding epitopes. Both hypoallergens MEM49 and MED171 showed marked reduction in their in vitro reactivity towards IgE from shrimp allergy patients and Met e 1-sensitized mice, as well as considerable decrease in induction of mast cell degranulation as demonstrated in passive cutaneous anaphylaxis assay. Both hypoallergens were able to induce Met e 1-recognizing IgG antibodies in mice, specifically IgG2a antibodies, that strongly inhibited IgE from shrimp allergy subjects and Met e 1-sensitized mice from binding to Met e 1. These results indicate that the two designer hypoallergenic molecules MEM49 and MED171 exhibit desirable preclinical characteristics, including marked reduction in IgE reactivity and allergenicity, as well as ability to induce blocking IgG antibodies. This approach therefore offers promises for development of immunotherapeutic regimen for shrimp tropomyosin allergy.  相似文献   

20.
The symptoms characteristic of allergic hypersensitivity are caused by the release of mediators, i.e., histamine, from effector cells such as basophils and mast cells. Allergens with more than one B cell epitope cross-link IgE Abs bound to high affinity FcepsilonRI receptors on mast cell surfaces leading to aggregation and subsequent mediator release. Thus, allergen-Ab complexes play a crucial role in the cascade leading to the allergic response. We here report the structure of a 1:1 complex between the major birch pollen allergen Bet v 1 and the Fab fragment from a murine monoclonal IgG1 Ab, BV16, that has been solved to 2.9 A resolution by x-ray diffraction. The mAb is shown to inhibit the binding of allergic patients' IgE to Bet v 1, and the allergen-IgG complex may therefore serve as a model for the study of allergen-IgE interactions relevant in allergy. The size of the BV16 epitope is 931 A2 as defined by the Bet v 1 Ab interaction surface. Molecular interactions predicted to occur in the interface are likewise in agreement with earlier observations on Ag-Ab complexes. The epitope is formed by amino acids that are conserved among major allergens from related species within the Fagales order. In combination with a surprisingly high inhibitory capacity of BV16 with respect to allergic patients' serum IgE binding to Bet v 1, these observations provide experimental support for the proposal of dominant IgE epitopes located in the conserved surface areas. This model will facilitate the development of new and safer vaccines for allergen immunotherapy in the form of mutated allergens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号