首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cancer vaccines serve as a promising clinical immunotherapeutic strategy that help to trigger an effective and specific antitumor immune response compared to conventional therapies. However, poor immunogenicity of tumor cells remains a major obstacle for clinical application, and developing new methods to modify the immunogenicity of tumor cells may help to improve the clinical outcome of cancer vaccines. 4T1 mouse breast cancer cell line has been known as poorly immunogenic and highly metastatic cell line. Using this model, we identified a sub cell line of 4T1—designated as 4T1-Sapporo (4T1-S)—which shows immunogenic properties when used as a vaccine against the same line. In 4T1-S-vaccinated mice, subcutaneous injection of 4T1-S resulted in an antitumor inflammatory response represented by significant enlargement of draining lymph nodes, accompanied with increased frequencies of activated CD8 T cells and a subpopulation of myeloid cells. Additionally, 4T1-S vaccine was ineffective to induce tumor rejection in nude mice, which importantly indicate that 4T1-S vaccine rely on T cell response to induce tumor rejection. Further analysis to identify mechanisms that control tumor immunogenicity in this model may help to develop new methods for improving the efficacies of clinical cancer vaccines.  相似文献   

2.
Vaccine development: From empiric discovery to knowledge‐based improvement A successful vaccination requires an efficient immune response towards the vaccine and the induction of long‐lasting immunological memory. Pattern recognition receptors such as the Toll‐like receptors are crucial components of the innate immune system required for the initiation of an anti‐infective immune response. TLR ligands may serve as efficient adjuvants for vaccines. Strategies for improvement of vaccines and for the future development of vaccines against as yet “non‐vaccinable” infectious diseases include novel antigen preparations, targeting of pattern recognition receptors, and exploitation of novel administration routes such as mucosal vaccination.  相似文献   

3.
The Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis. Although there are four classes of vaccines against JEV, all of them are administered by s.c or i.m injection. Here, the effectiveness of sublingual (s.l.) administration of a JEV live‐attenuated vaccine or recombinant modified vaccinia virus Ankara (MVA) vaccine, including JEV prM/E, was investigated. The mice were immunized three times i.m. or s.c. One week after the final immunization by both s.l. and i.m. routes, the titers of IgG1 induced by the recombinant MVA vaccine were higher than those induced by the live‐attenuated vaccine, whereas the titers of IgG2a induced by the live‐attenuated vaccine were higher than those induced by the recombinant MVA vaccine. However, both vaccines induced neutralizing antibodies when given by either s.l. or i.m. routes, indicating that both vaccines induce appropriate Th1 and Th2 cell responses through the s.l. and i.m. routes. Moreover, both vaccines protected against induction of proinflammatory cytokines and focal spleen white pulp hyperplasia after viral challenge. Virus‐specific IFN‐γ+ CD4+ and CD8+ T cells appeared to increase in mice immunized via both s.l. and i.m. routes. Interestingly, virus‐specific IL‐17+ CD4+ T cells increased significantly only in the mice immunized via the s.l. route; however, the increased IL‐17 did not affect pathogenicity after viral challenge. These results suggest that s.l. immunization may be as useful as i.m. injection for induction of protective immune responses against JEV by both live‐attenuated and recombinant MVA vaccines.  相似文献   

4.
DNA vaccines have emerged as an attractive approach for generating antigen-specific immunotherapy. Strategies that enhance antigen presentation may potentially be used to enhance DNA vaccine potency. Previous experiments showed that chimeric DNA vaccines utilizing endoplasmic reticulum (ER) chaperone molecules, such as Calreticulin (CRT), linked to an antigen were capable of generating antigen-specific CD8+ T cell immune responses in vaccinated mice. In this study, we tested DNA vaccines encoding the ER chaperone molecules ER-60, tapasin (Tap), or calnexin (Cal), linked to human papillomavirus type 16 (HPV-16) E7 for their abilities to generate E7-specific T cell-mediated immune responses and antitumor effects in vaccinated mice. Our results demonstrated that vaccination with DNA encoding any of these chaperone molecules linked to E7 led to a significant increase in the frequency of E7-specific CD8+ T cell precursors and generated stronger antitumor effects against an E7-expressing tumor in vaccinated mice compared to vaccination with wild-type E7 DNA. Our data suggest that DNA vaccines employing these ER chaperone molecules linked to antigen may enhance antigen-specific CD8+ T cell immune responses, resulting in a significantly more potent DNA vaccine.  相似文献   

5.
Yue Y  Xu W  Xiong S 《DNA and cell biology》2012,31(4):479-488
Induction of potent mucosal immune response is a goal of current vaccine strategies against mucus-infectious pathogens such as Coxsackievirus B3 type (CVB3). We previously showed that administration of lymphotactin (LTN) as an adjuvant could enhance the specific immune responses against a mucosal gene vaccine, chitosan-pVP1, against CVB3. To optimize the coadministration mode of the mucosal adjuvant, we compared the mucosal immune responses induced by chitosan-DNA vaccine with different combinations of the target VP1 antigen gene and the adjuvant LTN gene. The two genes were either cloned in separate vectors or coexpressed as a fusion or bicistron protein in the same vector before encapsulation in chitosan nanoparticles. Four doses of various adjuvant-combined chitosan-DNA were intranasally administrated to mice before challenge with CVB3. The results indicated that chitosan-formulated pVP1-LTN fusion plasmid exhibited very weak improvement of CVB3-specific immune responses. Although the bicistronic coexpression of LTN with VP1 was expected to be powerful, this combination had enhanced effects on serum IgG and systemic T cell immune responses, but not on mucosal T cell immunity. Coimmunization with VP1 and LTN as separate chitosan-DNA formulation remarkably enhanced antibody and T cell immune responses both in systemic and mucosal immune compartments, leading to the most desirable preventive effect on viral myocarditis. Taken together, how the adjuvant is combined with the target antigen has a strong influence on the mucosal immune responses induced by mucosal DNA vaccines.  相似文献   

6.
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant‐free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)‐restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell‐penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor‐specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross‐presentation by bone marrow‐derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb‐epitope (reminiscent for cross‐presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor‐infiltrating IFN‐γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber‐based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.  相似文献   

7.

Background

Malaria greatly impacts the health and wellbeing of over half of the world''s population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS) protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd) based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI) responses.

Methods and Findings

BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA) or SLAM receptors adaptor protein (EAT-2). Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein''s suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.

Conclusion

Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly improve the induction of malaria antigen specific adaptive immune responses in vivo.  相似文献   

8.
Anti-tumor vaccines capable of activating both CD4 and CD8 T cells are preferred for long lasting T cell responses. Induction of a tumor-specific T-cell response can be induced by tumor vaccines that target innate immunity. The ensuing T-cell response depends on efficient antigen presentation from phagocytosed cargo in the antigen presenting cell and is augmented by the presence of Toll-like receptor (TLR) ligands within the cargo. Biodegradable polymers are useful for vaccine delivery in that they are phagocytosed by antigen presenting cells (APCs) and could potentially be loaded with both the antigen and immune stimulatory TLR agents. This study was undertaken to evaluate the effect of poly lactic-co-glycolic acid (PLGA) polymer particles loaded with antigenic tumor lysate and immune stimulatory CpG oligonucleotides on induction of tumor specific immunity in a mouse model of melanoma. We found that after delivery, these immune stimulatory antigen loaded particles (ISAPs) efficiently activated APCs and were incorporated into lysosomal compartments of macrophages and dendritic cells. ISAP vaccination resulted in remarkable T cell proliferation, but only modestly suppressed tumor growth of established melanoma. Due to this discordant effect on tumor immunity we evaluated the role of regulatory T cells (Treg) and found that ISAP vaccination or tumor growth alone induced prolific expansion of tumor specific Treg. When the Treg compartment was suppressed with anti-CD25 antibody, ISAP vaccination induced complete antigen-specific immunity in a prophylactic model. ISAP vaccination is a novel tumor vaccine strategy that is designed to co-load the antigen with a TLR agonist enabling efficient Ag presentation. Targeting of T-reg expansion during vaccination may be necessary for inducing effective tumor-specific immunity. Supported in part by grants from NIH R21 CA100652-01, the American Cancer Society IRG-77-004-28 and Michael C. Sandler.  相似文献   

9.
Host factors such as nutritional status and immune cell state are important for vaccine efficacy. Inflammasome activation may be important for triggering vaccine‐induced humoral and cell‐mediated immune responses. Formulations with alum as a typical adjuvant to overcome the effects of host factors have recently been shown to induce inflammasome activation, which augments vaccine efficacy. Apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC) is one of the main components of inflammasomes, but it is not clear whether ASC affects the vaccine‐induced immune response. Herein, we used two types of vaccines: inactivated influenza vaccine not formulated with alum, and HPV vaccine formulated with alum. We gave the vaccines to ASC knockout (ASC?/?) mice to investigate the role of ASC in vaccine efficacy. Influenza vaccine‐immunized ASC?/? mice did not show antibody titers in week 2 after the first vaccination. After boosting, the antibody titer in ASC?/? mice was about half that in wild type (WT) mice. Furthermore, a cytotoxic T‐lymphocyte response against influenza vaccine was not induced in ASC?/? mice. Therefore, vaccinated ASC?/? mice did not show effective protection against viral challenge. ASC?/? mice immunized with alum‐formulated HPV vaccine showed similar antibody titers and T‐cell proliferation compared with immunized WT mice. However, the HPV vaccine without alum induced up to threefold lower titers of HPV‐specific antibody titers in ASC?/? mice compared with those in WT mice. These findings suggest that alum in vaccine can overcome the ASC‐deficient condition.
  相似文献   

10.
Immunization of mice with dendritic cells transfected ex vivo with tumor-associated antigen (TAA)-encoding mRNA primes cytotoxic T lymphocytes (CTL) that mediate tumor rejection. Here we investigated whether direct injection of TAA mRNA, encapsulated in cationic liposomes, could function similarly as cancer immunotherapy. Intradermal and intravenous injection of ovalbumin (OVA) mRNA generated specific CTL activity and inhibited the growth of OVA-expressing tumors. Vaccination studies with DNA have demonstrated that co-administration of antigen (Ag)- and cytokine-encoding plasmids potentiate the T cell response; in analogous fashion, the inclusion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA enhanced OVA-specific cytotoxicity. The ability of this GM-CSF-augmented mRNA vaccine to treat an established spontaneous tumor was evaluated in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mouse, using the SV40 large T Ag (TAg) as a model tumor/self Ag. Repeated vaccination elicited vigorous TAg-specific CTL activity in nontransgenic mice, but tumor-bearing TRAMP mice remained tolerant. Adoptive transfer of naïve splenocytes into TRAMP mice prior to the first vaccination restored TAg reactivity, and slowed tumor progression. The data from this study suggests that vaccination with TAA mRNA is a simple and effective means of priming antitumor CTL, and that immunogenicity of the vaccine can be augmented by co-delivery of GM-CSF mRNA. Nonetheless, limitations of such vaccines in overcoming tolerance to tumor/self Ag may mandate prior or simultaneous reconstitution of the autoreactive T cell repertoire for this form of immunization to be effective.  相似文献   

11.
为阐明小鼠IgG2b-Fc对DNA疫苗免疫原性的增强作用,首先构建表达人类免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)CN54Gag基因的DNA疫苗及表达Gag与小鼠IgG2b-Fc融合基因的DNA疫苗,限制性酶切和DNA测序结果表明这两个疫苗均构建成功,蛋白免疫印迹结果也显示其正确表达。然后,利用上述DNA疫苗接种C57BL/6小鼠,比较两个DNA疫苗所诱导的特异性体液免疫反应和特异性细胞免疫反应。结果显示,融合表达小鼠IgG2b-Fc对特异性细胞免疫和体液免疫反应均有增强作用,但只有对特异性体液免疫反应的增强作用有统计学意义。  相似文献   

12.
目的评价PorA、PorB和Class4对流感裂解疫苗的免疫增强作用,从中挑选出最有效的流感黏膜佐剂,为发展流感黏膜疫苗提供理论基础。方法流感三价裂解抗原按比例与PorA、PorB和Class4非共价结合,滴鼻免疫Balb/c小鼠3次,采取间接ELISA检测血清特异性IgG抗体及抗体亚型,检测鼻咽、肺、小肠和阴道冲洗液中IgA效价,采用血凝抑制试验检测血清中HAI效价。结果PorB重组蛋白佐剂组较无佐剂的流感裂解抗原组在提高小鼠早期免疫应答的同时诱导较强的系统免疫应答和黏膜免疫应答;PorA组也有黏膜佐剂的功能,但和无佐剂的流感裂解抗原组相比,差异无统计学意义。结论在蛋白体的三分子中,以PorB为佐剂的流感黏膜疫苗不仅提高了抗原的系统免疫应答,而且诱导了较强的小鼠呼吸道、生殖道的局部黏膜免疫应答,为流感黏膜疫苗的研制奠定了理论基础。  相似文献   

13.
Despite recent advances in developing and licensing adjuvants, there is a great need for more potent formulations to enhance immunogenicity of vaccines. An Eimeria tenella derived antigen (rEA) augments immune responses against several pathogens in animal models and recently was confirmed to be safe for human use. In this study, we have analyzed the molecular mechanisms underlying rEA activity in mice, and confirmed that rEA activates multiple immune cell types, including DCs, macrophages, NK, B, and T cells. The rEA adjuvant also elicits the induction of pleiotropic pro-inflammatory cytokines, responses that completely depend upon the presence of the TLR adaptor protein MyD88. Surprisingly, we also found that the TRIF adaptor protein acts as a potent negative regulator of TLR agonist-triggered immune responses. For example, IL12 production and the induction of co-stimulatory molecule expression by DCs and IFNγ production by NK cells in vivo were significantly increased in rEA-treated TRIF-KO mice. Importantly, however, TRIF suppressive effects were not restricted to rEA-mediated responses, but were apparent in LPS- or ODN2006-activated DCs as well. Taken together, our findings confirm that rEA is a potent adjuvant, triggering robust activation of the innate immune system, in a manner that is augmented by MyD88 and inhibited by TRIF; thereby unveiling the potential complexities of modulating TLR activity to augment vaccine efficacy.  相似文献   

14.
In the present study, the adjuvant effect of soybean oil containing ginseng root saponins (SO‐GS‐R) on the immune response to foot‐and‐mouth disease vaccine (FMDV) in mice was investigated. When immunized with FMDV antigen emulsified in an SO‐GS‐R formulation, mice generated remarkably higher serum antibody and cytokine responses than mice immunized with FMDV antigen alone. To elucidate the mechanisms underlying the adjuvant effect of SO‐GS‐R, we measured cytokines in serum and muscle tissue after intramuscular injection of SO‐GS‐R. The results showed that injection of SO‐GS‐R significantly increased the levels of IL‐1β, IL‐5, IL‐6, G‐CSF, KC, MCP‐1, MIP‐1α, and MIP‐1β in both serum and muscle. These results suggested that SO‐GS‐R recruits neutrophils, eosinophils, T cells and macrophages, causing immune cell recruitment at the injection site, driving antigen‐presenting cells to actively participate in the onset of immunity, and amplifying the immune responses. Considering its adjuvant activity and plant‐derived properties, SO‐GS‐R should be further studied for its adjuvant effect on vaccines used in food animals.
  相似文献   

15.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

16.

Background

Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.

Methodology/Principal Findings

In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8+ and CD8 T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.

Conclusion/Significance

The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.  相似文献   

17.
Polytope approach of genetic immunization is a promising strategy for the prevention of infectious disease as it is capable of generating effective cell mediated immunity by delivering the T cell epitopes assembled in series. Leishmaniasis is a significant world wide health problem for which no vaccine exists. In this study we have compared immunogenicity and efficacy of three types of DNA vaccines: single antigen Gp63 (Gp63/pcDNA), polytope (Poly/pcDNA) and Polytope fused with hsp70 (Poly/hsp/pcDNA) against visceral leishmaniasis in susceptible BALB/c mice. Mice vaccinated with these plasmids generated strong Th1 immune response as seen by dominating IFN-γ over IL-10 cytokine. Interestingly, cytotoxic responses generated by polytope DNA plasmid fused with hsp70 of Leishmania donovani were significantly higher when compared to polytope and single antigen Gp63 vaccine. Challenge studies revealed that the parasite load in liver and spleen was significantly lower with Poly/hsp/pcDNA vaccination compared to other vaccines. Therefore, our study indicates that polytope DNA vaccine is a feasible, practical and effective approach for visceral leishmaniasis.  相似文献   

18.
Viral vaccine vectors have emerged as an attractive strategy for the development of a human immunodeficiency virus (HIV) vaccine. Recombinant Newcastle disease virus (rNDV) stands out as a vaccine vector since it has a proven safety profile in humans, it is a potent inducer of both alpha interferon (IFN-α) and IFN-β) production, and it is a potent inducer of dendritic cell (DC) maturation. Our group has previously generated an rNDV vector expressing a codon-optimized HIV Gag protein and demonstrated its ability to induce a Gag-specific CD8(+) T cell response in mice. In this report we demonstrate that the Gag-specific immune response can be further enhanced by the targeting of the rNDV-encoded HIV Gag antigen to DCs. Targeting of the HIV Gag antigen was achieved by the addition of a single-chain Fv (scFv) antibody specific for the DC-restricted antigen uptake receptor DEC205 such that the DEC205 scFv-Gag molecule was encoded for expression as a fusion protein. The vaccination of mice with rNDV coding for the DC-targeted Gag antigen induced an enhanced Gag-specific CD8(+) T cell response and enhanced numbers of CD4(+) T cells and CD8(+) T cells in the spleen relative to vaccination with rNDV coding for a nontargeted Gag antigen. Importantly, mice vaccinated with the DEC205-targeted vaccine were better protected from challenge with a recombinant vaccinia virus expressing the HIV Gag protein. Here we demonstrate that the targeting of the HIV Gag antigen to DCs via the DEC205 receptor enhances the ability of an rNDV vector to induce a potent antigen-specific immune response.  相似文献   

19.
The global Zika virus (ZIKV) outbreak and its link to foetal and newborn microcephaly and severe neurological complications in adults call for the urgent development of ZIKV vaccines. In response, we developed a subunit vaccine based on the ZIKV envelope (E) protein and investigated its immunogenicity in mice. Transient expression of ZIKV E (zE) resulted in its rapid accumulation in leaves of Nicotiana benthamiana plants. Biochemical analysis revealed that plant‐produced ZIKV E (PzE) exhibited specific binding to a panel of monoclonal antibodies that recognize various zE conformational epitopes. Furthermore, PzE can be purified to >90% homogeneity with a one‐step Ni2+ affinity chromatography process. PzE are found to be highly immunogenic, as two doses of PzE elicited both potent zE‐specific antibody and cellular immune responses in mice. The delivery of PzE with alum induced a mixed Th1/Th2 immune response, as the antigen‐specific IgG isotypes were a mixture of high levels of IgG1/IgG2c and splenocyte cultures from immunized mice secreted significant levels of IFN‐gamma, IL‐4 and IL‐6. Most importantly, the titres of zE‐specific and neutralizing antibodies exceeded the threshold that correlates with protective immunity against multiple strains of ZIKV. Thus, our results demonstrated the feasibility of plant‐produced ZIKV protein antigen as effective, safe and affordable vaccines against ZIKV.  相似文献   

20.
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号