首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Morozova-Roche LA 《FEBS letters》2007,581(14):2587-2592
Calcium-binding equine lysozyme (EL) combines the structural and folding properties of c-type lysozymes and alpha-lactalbumins, connecting these two most studied subfamilies. The structural insight into its native and partially folded states is particularly illuminating in revealing the general principles of protein folding, amyloid formation and its inhibition. Among lysozymes EL forms one of the most stable molten globules and shows the most uncooperative refolding kinetics. Its partially-folded states serve as precursors for calcium-dependent self-assembly into ring-shaped and linear amyloids. The innate amyloid cytotoxicity of the ubiquitous lysozyme highlights the universality of this phenomenon and necessitates stringent measures for its prevention.  相似文献   

2.
Herein, the binding of 1-methyl-3-octylimidazolium chloride [OMIM][Cl] ionic liquid with hen egg white lysozyme (HEWL) has been studied using fluorescence, time resolved fluorescence, UV–visible and circular dichroism (CD) spectroscopy, in combination with computational study. The fluorescence results revealed that [OMIM][Cl] quenches the fluorophore of HEWL through static quenching mechanism. The calculated thermodynamic parameters show that [OMIM][Cl] bind with HEWL through hydrophobic interactions. In addition, the negative value of Gibbs energy change (?G) indicates that the binding process was spontaneous. Furthermore, UV–vis and CD results indicate that [OMIM][Cl] induce the conformational change in HEWL and increase its enzymatic activity. Additionally, molecular docking results showed that [OMIM][Cl] binds at the active site of HEWL where both the fluorophore residues (Trp108 and Trp62) and the catalytic residues (Glu35 and Asp52) reside. Molecular dynamic simulation results show the reduction of intra-molecular hydrogen bond of HEWL when it binds with [OMIM][Cl].  相似文献   

3.
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.  相似文献   

4.
In addition to their role in sperm maturation, recent evidence has indicated that epididymal proteins have a role in male reproductive tract innate immunity. Herein we demonstrate that human and macaque epididymal protein isoforms in the SPAG (sperm associated antigen) 11 family, full length SPAG11C, K and L exhibit potent antibacterial activity against E. coli. Analysis of activities of the N- and C-terminal domains revealed that the human N-terminal peptide is bactericidal, while the C-terminal domains that contain the defensin-like 6 cysteine array in SPAG11C and partial arrays in SPAG11K and SPAG11L, lack antibacterial activity. The N-terminal peptide does not appear to contain all the determinants of activity since full-length human SPAG11C is more active than the isolated N-terminal peptide and since sulfhydryl reduction and alkylation, which would affect primarily the C-terminal peptides, completely abolished activities of the whole proteins. These results suggest that the structure conferred by the disulfide bonds in human SPAG11C contributes to the antibacterial activity of the whole molecule. The activities of the N-terminal peptide and of full length human SPAG11C were somewhat reduced in increasing NaCl concentrations. In contrast, the antibacterial activities of full length macaque SPAG11C, K and L were unaffected by the presence of NaCl suggesting a mechanism in the macaque that is less dependent upon electrostatic interactions. SPAG11C, K and L disrupted E. coli membranes but had no effect on erythrocyte membranes. Inhibition of E. coli RNA, DNA and protein synthesis by nonlethal concentrations of SPAG11 isoforms indicated an additional mechanism of bacterial killing. Abbreviation: SPAG11, sperm associated antigen 11; CFUs, colony forming units; NPN, N-phenyl-1-napthylamine; diSC3-5, 3,5-dipropylthiadicarbocyanine iodide; IAA, iodoacetamide; BME, β-mercaptoethanol  相似文献   

5.
As protein crystals generally possess a high water content, it is assumed that the behaviour of a protein in solution and in crystal environment is very similar. This assumption can be investigated by molecular dynamics (MD) simulation of proteins in the different environments. Two 2ns simulations of hen egg white lysozyme (HEWL) in crystal and solution environment are compared to one another and to experimental data derived from both X-ray and NMR experiments, such as crystallographic B-factors, NOE atom–atom distance bounds, 3JH N-coupling constants, and 1H-15N bond vector order parameters. Both MD simulations give very similar results. The crystal simulation reproduces X-ray and NMR data slightly better than the solution simulation.  相似文献   

6.
7.
YbgC proteins are bacterial acyl-CoA thioesterases associated with the Tol-Pal system. This system is important for cell envelope integrity and is part of the cell division machinery. In E. coli, YbgC associates with the cell membrane and is part of a protein network involved in lipid biogenesis. In the human pathogen Helicobacter pylori, a putative homologue of YbgC, named HP0496, was found to interact with the cytotoxin CagA by two different studies. We have determined its crystal structure and characterized its enzymatic activity. The structure of HP0496 shows that it is a member of the hot-dog family of proteins, with a epsilongamma tetrameric arrangement. Finally, enzymatic assays performed with the purified protein showed that HP0496 is an acyl-CoA thioesterase that favors long-chain substrates.  相似文献   

8.
The invertebrate lysozyme (i-lyz or destabilase) is present in shrimp. This protein may have a function as a peptidoglycan-breaking enzyme and as a peptidase. Shrimp is commonly infected with Vibrio sp., a Gram-negative bacteria, and it is known that the c-lyz (similar to chicken lysozyme) is active against these bacteria. To further understand the regulation of lysozymes, we determined the gene sequence and modeled the protein structure of i-lyz. In addition, the expression of i-lyz and c-lyz in response to lipopolysaccharide (LPS) was studied. The shrimp i-lyz gene is interrupted by two introns with canonical splice junctions. The expression of the shrimp i-lyz was transiently down-regulated after LPS injection followed by induction after 6 h in hepatopancreas. In contrast, c-lyz was up-regulated in hepatopancreas 4 h post-injection and slightly down-regulated in gills. The L. vannamei i-lyz does not contain the catalytic residues for muramidase (glycohydrolase) neither isopeptidase activities; however, it is known that the antibacterial activity does not solely rely on the enzymatic activity of the protein. The study of invertebrate lysozyme will increase our understanding of the regulatory process of the defense mechanisms.  相似文献   

9.
The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57?×?104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.  相似文献   

10.
Model glycopeptides of the general formula Boc-Ala-Thr(G-D)-A(1)-A(2)-Leu-Leu-Lys(N)-Ala-OMe, where D = dansyl (dimethyl aminonaphthalenesulphonyl), G = glucosyl and N = naphthyl, while A(1)-A(2) = Ala-Leu or Aib-Aib, and denoted as D-G-Ala-N and D-G-Aib-N, respectively, were used to investigate glycoprotein-membrane interactions. They carry two fluorophores (D and N), covalently linked to the glucose ring and the lysine side chain, respectively, while the threonine side chain is O-glycosylated. CD spectra in different solvent media suggest that both glycopeptides attain an ordered structure, possibly a helix-like conformation. By combining FRET (fluorescence resonance energy transfer) experiments with molecular mechanics data, the most probable structures of both glycopeptides were built up, starting from both a right-handed (rh) alpha- and 3(10)-helix. They were found to populate an alpha-helical conformation, a result further confirmed by the very good agreement between theoretical and experimental quenching efficiency only observed when the backbone chain was in alpha-helix. The association of D-G-Ala-N with model membranes (liposomes) was studied by CD, fluorescence decay, fluorescence anisotropy, and collisional quenching experiments. The binding does not alter the structural features of the peptide because the CD spectral patterns are unaffected by the association. The peptide orientation inside the phospholipidic bilayer is guided by the polar glucose molecule lying in the water phase. The insertion of the hydrophobic backbone chain into the membrane, seeing the probes only partially accessible from the external solution, is characterized by a significant degree of heterogeneity, an increase in vesicles size, and a relevant stabilizing effect on the membrane itself against rupture by methanol.  相似文献   

11.
宁燕夏  苏月华  杨梅 《昆虫学报》2021,64(7):781-789
[目的]本研究旨在通过研究小菜蛾Plutella xylostella溶菌酶的功能,进一步认识小菜蛾的免疫防御机理,为小菜蛾的生物防治提供新的思路.[方法]利用RACE技术克隆小菜蛾溶菌酶基因.构建原核表达载体pET-29a-Pxlys,利用原核表达系统表达并用镍柱亲和层析纯化重组蛋白Pxlys.利用牛津杯法检测重组蛋...  相似文献   

12.
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

13.
Ji C  Li AH  Xie J  Zhang DF  Liu JY 《Journal of fish biology》2011,79(7):2083-2086
Neutralizing complement C9 in grass carp Ctenopharyngodon idella sera with rabbit anti-C9 sera against fish complement C9, demonstrated that bactericidal activity against Aeromonas hydrophila of the C9-deficient fish sera was greatly impaired. These results indicated that the fish complement C9 plays a key role in pathogen killing through the lytic pathway.  相似文献   

14.
Although vitamin C is considered to act both as pro-oxidant and antioxidant, the mechanisms underlying these actions are still unclear. Using the oxygen-sensitive system of a strict anaerobe, Prevotella melaninogenica, we investigated both the pro-oxidant and antioxidant mechanisms of vitamin C. In the presence of vitamin C, the 8-hydroxydeoxyguanosine (8OHdG) formation induced by oxygen exposure was enhanced, probably due to the action of vitamin C on hydrogen peroxide generated during oxygen exposure: while catalase almost completely suppressed the enhancing effect of vitamin C, 8OHdG formation induced by hydrogen peroxide was enhanced by vitamin C. By contrast, the presence of vitamin C inhibited bacterial cell death, membrane damage, and lipid peroxidation induced by oxygen exposure. Sodium azide showed similar effects to vitamin C, thus the antioxidant action of vitamin C may be due to its quenching of the singlet oxygen generated in this system. Both the pro-oxidant and antioxidant effects of vitamin C were observed only in acidic conditions.  相似文献   

15.
In an effort to better understand the initial mechanism of selectivity and membrane association of the synthetic antimicrobial peptide NK‐2, we have applied molecular dynamics simulation techniques to elucidate the interaction of the peptide with the membrane interfaces. A homogeneous dipalmitoylphosphatidylglycerol (DPPG) and a homogeneous dipalmitoylphosphatidylethanolamine (DPPE) bilayers were taken as model systems for the cytoplasmic bacterial and human erythrocyte membranes, respectively. The results of our simulations on DPPG and DPPE model membranes in the gel phase show that the binding of the peptide, which is considerably stronger for the negatively charged DPPG lipid bilayer than for the zwitterionic DPPE, is mostly governed by electrostatic interactions between negatively charged residues in the membrane and positively charged residues in the peptide. In addition, a characteristic distribution of positively charged residues along the helix facilitates a peptide orientation parallel to the membrane interface. Once the peptides reside close to the membrane surface of DPPG with the more hydrophobic side chains embedded into the membrane interface, the peptide initially disturbs the respective bilayer integrity by a decrease of the order parameter of lipid acyl chain close to the head group region, and by a slightly decrease in bilayer thickness. We found that the peptide retains a high content of helical structure on the zwitterionic membrane‐water interface, while the loss of α‐helicity is observed within a peptide adsorbed onto negatively charged lipid membranes. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Phosphatidic acid is the simplest (diacyl)glycerophospholipid present in cells and is now a well established second messenger with direct biological functions. It is specifically recognized by diverse proteins and plays an important role in cellular signaling and membrane dynamics in all eukaryotes. An important determinant of the biological functions of phosphatidic acid is its anionic headgroup. In this review we will focus on the peculiar ionization properties of phosphatidic acid and their crucial role in lipid–protein interactions. We will take a molecular approach focusing entirely on the physical chemistry of the lipid and develop a model explaining the ionization properties of phosphatidic acid, termed the electrostatic-hydrogen bond switch model. Diverse examples from recent literature in support of this model will be presented and the broader implications of our findings will be discussed.  相似文献   

17.
18.
One of the major tasks in understanding the etiopathogenesis of amyloid beta-induced neurotoxicity of Alzheimer's disease (AD), is in fully capturing the large number of the biochemical processes that influence each other during the course of the disease, in vivo. Model membranes possess, as their main strength, the ability to enable the researcher to manipulate a 'biological' micro-vesicle under a controlled environment. This review narrowly focuses on discussing the exploitation of model membranes for improved understanding of some of the mechanisms governing AD's amyloid beta-induced neurotoxicity. Amyloid beta (Abeta) is cleaved from a membrane-located amyloid precursor protein by membrane-located enzymes. The relative spatial localization of the involved biomolecules within the membrane bilayer is crucial in influencing Abeta production, its aggregation on the membrane surface or insertion into the membrane, and fibril formation: all important processes in causing neurotoxicity. The lipid composition of the bilayer is similarly important. The review also attempts to highlight current and future challenges in using model membranes for studying biochemical processes.  相似文献   

19.
The prion protein (PrP) is responsible for several fatal neurodegenerative diseases via conversion from its normal to disease-related isoform. The recombinant form of the protein is typically studied to investigate the conversion process. This constructs lacks the co- and post-translational modifications present in vivo , there the protein has two N-linked glycans and is bound to the outer leaflet of the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The inherent flexibility and heterogeneity of the glycans, the plasticity of the GPI anchor, and the localization of the protein in a membrane make experimental structural characterization of biological constructs of cellular prion protein (PrPC) challenging. Yet this characterization is central in determining not only the suitability of recombinant (rec)-PrPC as a model for biological forms of the protein but also the potential role of co- and post-translational modifications on the disease process. Here, we present molecular dynamics simulations of three human prion protein constructs: (i) a protein-only construct modeling the recombinant form, (ii) a diglycosylated and soluble construct, and (iii) a diglycosylated and GPI-anchored construct bound to a lipid bilayer. We found that glycosylation and membrane anchoring do not significantly alter the structure or dynamics of PrPC, but they do appreciably modify the accessibility of the polypeptide surface PrPC. In addition, the simulations of membrane-bound PrPC revealed likely recognition domains for the disease-initiating PrPC:PrPSc (infectious and/or misfolded form of the prion protein) binding event and a potential mechanism for the observed inefficiency of conversion associated with differentially glycosylated PrP species.  相似文献   

20.
Three-dimensional models of the five human muscarinic receptors were obtained from their known sequences. Homology modelling based on the crystallographic structure of bovine rhodopsin yielded models compatible with known results from site-directed mutagenesis studies. The only exceptions were the cytoplasmic loop 3 (CL3) in the five receptors, and the large C-terminal domain in M(1). Here, homology modelling with other closely related proteins allowed to solve these gaps. A detailed comparative discussion of the five models is given. The second part of the work involved docking experiments with the physiological ligand acetylcholine, again yielding results entirely compatible with results from mutagenesis experiments. The study revealed analogies and differences between the five receptors in the residues, and interactions leading to the recognition and binding of acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号