首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wang J  Li Y  Han Z  Zhu Y  Xie Z  Wang J  Liu Y  Li X 《PloS one》2012,7(5):e36623
Ryanodine receptors (RyRs) are the targets of two novel classes of synthetic insecticidal chemicals, phthalic acid diamides and anthranilic diamides. Isolation of full-length RyR cDNAs is a critical step towards the structural and functional characterization of insect RyRs and an understanding of the molecular mechanisms underlying the species selective toxicity of diamide insecticides. However, there has been little research on the insect RyR genes due to the high molecular weight of the RyR proteins. In this study, we isolated a full-length RyR cDNA (named as CmRyR) from Cnaphalocrocis medinalis, an important rice pest throughout Southeast Asia. The composite CmRyR gene contains an ORF of 15264 bp encoding a protein of 5087 amino acid residues, which shares 79% overall identity with its Drosophila melanogaster homologue. All hallmarks of the RyR proteins are conserved in the CmRyR protein, suggesting that CmRyR is a structural and functional analogue of known RyRs. A multiple sequence alignment illustrates that the insect RyRs share high levels of amino acid sequence identity at the the COOH-terminal region. However, the amino acid residues analogous to the CmRyR residues N(4922), N(4924), N(4935), L(4950), L(4981), N(5013) and T(5064) are unique to lepidopteran RyRs compared with non-lepidopteran insect RyRs. This finding suggests that these residues may be involved in the differences in channel properties between lepidopteran and non-lepidopteran insect RyRs and in the species selective toxicity of diamide insecticides. Furthermore, two alternative splicing sites were identified in the CmRyR gene, one of which was located in the central part of the predicted second SPRY domain. Diagnostic PCR showed that the inclusion frequencies of two mutually exclusive exons (a/b) and one optional exon (c) differed between developmental stages or adult anatomical regions. Our results imply that alternative splicing may be a major means of generating functional diversity in C. medinalis RyR channel.  相似文献   

3.
Voltage-gated sodium channels are essential for the generation and propagation of action potentials in most excitable cells. They are the target sites of several classes of insecticides and acaricides. Isolation of full-length sodium channel cDNA is a critical and often difficult step toward an understanding of insecticide and acaricide resistance. We previously cloned and sequenced two overlapping cDNA clones covering segment 3 of domain II (IIS3) to segment 6 of domain IV (IVS6) of an arachnid sodium channel gene (named VmNa) from the varroa mite (Varroa destructor) (J. Apicultureal Res. 40 (2002) 5.). In this study, we isolated three more overlapping cDNA clones and revealed the entire coding region of VmNa (Genbank accession number: AY259834), thus providing the first complete cDNA sequence of an arachnid sodium channel gene. The composite VmNa cDNA contains 6645 nucleotides with an open reading frame encoding 2215 amino acids. The deduced amino acid sequence of VmNa shares a 51% overall identity with Drosophila Para and a 41% identity with the mammalian sodium channel alpha-subunit Na(v)1.2. All hallmarks of sodium channel proteins are conserved in the VmNa protein. Three optional exons and one retained intron were identified in VmNa. The precise position and size of only one exon is conserved in three insect sodium channel genes and mammalian Na(v)1.6 genes in human, mouse and fish, whereas the other three are novel. Interestingly, one of the novel exons is located in the C-terminus, where no alternative exons have been identified in any other sodium channel gene.  相似文献   

4.
The incomplete correlation between the organismal complexities and the number of genes among eukaryotic organisms can be partially explained by multiple protein products of a gene created by alternative splicing. One type of alternative splicing involves alternative selection of mutually exclusive exons and creates protein products with substitution of one segment of the amino acid sequence for another. To elucidate the evolution of the mutually exclusive 115-bp exons, designated flip and flop, of vertebrate AMPA receptor genes, the gene structures of chordate (tunicate, cephalochordate, and vertebrate) and protostome (Drosophila and Caenorhabditis elegans) AMPA receptor subunits were compared. Phylogenetic analysis supports that the vertebrate flip and flop exons evolved from a common sequence. Flip and flop exons exist in all vertebrate AMPA receptor genes but only one 115-bp exon is present in the genes of tunicates and cephalochordates, suggesting that the exon duplication event occurred at the ancestral vertebrate AMPA receptor gene after the separation of vertebrates from primitive chordates. The structures of animal AMPA receptor genes also suggest that an intron insertion to separate the primordial flip/flop exon from the M4-coding exon occurred before the exon duplication event and probably at the chordate lineage. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

5.
Ryanodine receptor (RyR) Ca2+ release channel is the target of diamide insecticides, which show selective insecticidal activity against lepidopterous insects. To study the molecular mechanisms underlying the species-specific action of diamide insecticides, we have cloned and characterized the entire cDNA sequence of RyR from Ostrinia furnacalis (named as OfRyR). The OfRyR mRNA has an Open Reading Frame of 15324 bp nucleotides and encodes a 5108 amino acid polypeptide that displays 79–97% identity with other insects RyR proteins and shows the greatest identity with Cnaphalocrocis medinalis RyR (97%). Quantitative real-time PCR showed that the OfRyR was expressed at the lowest level in egg and the highest level in adult. The relative expression level of OfRyR in first, third and fifth-instar larva were 1.28, 1.19 and 1.99 times of that in egg. Moreover, two alternative splicing sites were identified in the OfRyR gene. One pair of mutually exclusive exons (a/b) were present in the central part of the predicted SPRY domain, and an optional exon (c) was located between the third and fourth RyR domains. Diagnostic PCR demonstrated that exons a and b existed in all developmental stages of OfRyR cDNA, but exon c was not detected in the egg cDNA. And the usage frequencies of these exons showed a significant difference between different developmental stages. These results provided the crucial basis for the functional expression of OfRyR and for the discovery of compound with potentially selective insect activtity.  相似文献   

6.
Alternative splicing of eukaryotic pre-mRNAs is an important mechanism for generating proteome diversity and regulating gene expression. The Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene is an extreme example of mutually exclusive splicing. Dscam contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA and protein isoforms. We previously identified two sets of conserved sequence elements, the docking site and selector sequences in the Dscam exon 6 cluster, which contains 48 mutually exclusive exons. These elements were proposed to engage in competing RNA secondary structures required for mutually exclusive splicing, though this model has not yet been experimentally tested. Here we describe a new system that allowed us to demonstrate that the docking site and selector sequences are indeed required for exon 6 mutually exclusive splicing and that the strength of these RNA structures determines the frequency of exon 6 inclusion. We also show that the function of the docking site has been conserved for ~500 million years of evolution. This work demonstrates that conserved intronic sequences play a functional role in mutually exclusive splicing of the Dscam exon 6 cluster.  相似文献   

7.
8.
A. A. Peixoto  L. A. Smith    J. C. Hall 《Genetics》1997,145(4):1003-1013
The genomic organization of a gene coding for an α1 subunit of a voltage-gated calcium channel of Drosophila melanogaster (Dmca1A) was determined. Thirty-four exons, distributed over 45 kb of genomic sequence, have been identified and mapped, including exons in three regions involved in alternative splicing and new sites potentially involved in RNA editing. The comparison of the intron/exon boundaries of this channel with a mammalian counterpart shows that the genomic structure of these two genes has remained fairly similar during evolution, with more than half of the Drosophila intron positions being perfectly conserved compared to the human channel. Phylogenetic analysis of the mutually exclusive alternative exons revealed that they have diverged considerably. It is suggested that this divergence, rather than reflecting evolutionary age, is the likely result of accelerated rates of evolution following duplication.  相似文献   

9.
Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of “splice code”. So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this “balance” model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2) gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the “switch-like” mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved “splice code,” in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.  相似文献   

10.
Graveley BR 《Cell》2005,123(1):65-73
Drosophila Dscam encodes 38,016 distinct axon guidance receptors through the mutually exclusive alternative splicing of 95 variable exons. Importantly, known mechanisms that ensure the mutually exclusive splicing of pairs of exons cannot explain this phenomenon in Dscam. I have identified two classes of conserved elements in the Dscam exon 6 cluster, which contains 48 alternative exons--the docking site, located in the intron downstream of constitutive exon 5, and the selector sequences, which are located upstream of each exon 6 variant. Strikingly, each selector sequence is complementary to a portion of the docking site, and this pairing juxtaposes one, and only one, alternative exon to the upstream constitutive exon. The mutually exclusive nature of the docking site:selector sequence interactions suggests that the formation of these competing RNA structures is a central component of the mechanism guaranteeing that only one exon 6 variant is included in each Dscam mRNA.  相似文献   

11.
The voltage-gated sodium channel Na(v)1.8 is only expressed in subsets of neurons in dorsal root ganglia (DRG) and trigeminal and nodose ganglia. We have isolated mouse partial length Na(v)1.8 cDNA clones spanning the exon 17 sequence, which have 17 nucleotide substitutions and 12 predicted amino acid differences from the published sequence. The absence of a mutually exclusive alternative exon 17 was confirmed by sequencing 4.1 kilobases of genomic DNA spanning exons 16-18 of Scn10a. A novel cDNA isoform was identified, designated Na(v)1.8c, which results from alternative 3'-splice site selection at a CAG/CAG motif to exclude the codon for glutamine 1031 within the interdomain cytoplasmic loop IDII/III. The ratio of Na(v)1.8c (CAG-skipped) to Na(v)1.8 (CAG-inclusive) mRNA in mouse is approximately 2:1 in adult DRG, trigeminal ganglion, and neonatal DRG. A Na(v)1.8c isoform also occurs in rat DRG, but is less common. Of the two other tetrodotoxin-resistant channels, no analogous alternative splicing of mouse Na(v)1.9 was detected, whereas rare alternative splicing of Na(v)1.5 at a CAG/CAG motif resulted in the introduction of a CAG trinucleotide. This isoform, designated Na(v)1.5c, is conserved in rat and encodes an additional glutamine residue that disrupts a putative CK2 phosphorylation site. In summary, novel isoforms of Na(v)1.8 and Na(v)1.5 are each generated by alternative splicing at CAG/CAG motifs, which result in the absence or presence of predicted glutamine residues within the interdomain cytoplasmic loop IDII/III. Mutations of sodium channels within this cytoplasmic loop have previously been demonstrated to alter electrophysiological properties and cause cardiac arrhythmias and epilepsy.  相似文献   

12.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

13.
In a previous study, we showed that two alternative exons (G1 and G2 encoding IIIS3-S4) were involved in the differential sensitivity of two cockroach sodium channel splice variants, BgNa(v)1-1 and BgNa(v)2-1 (previously called KD1 and KD2), to deltamethrin, a pyrethroid insecticide (Tan, et al., 2002b. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J. Neurosci. 22, 5300-5309.). Here, we report the identification of an amino acid residue in exon G2 that contributes to the low deltamethrin sensitivity of BgNa(v)2-1. Replacement of A1356 in BgNa(v)2-1 with the corresponding V1356 in BgNa(v)1-1 enhanced the sensitivity of the BgNa(v)2-1 channel to deltamethrin by six-fold. Conversely, substitution of V1356 with A1356 in BgNa(v)1-1 produced a recombinant BgNa(v)1-1 channel that was 5-fold more resistant to deltamethrin. These results demonstrate that A1356 contributes to the low sensitivity of BgNa(v)2-1 to deltamethrin. A1356V substitution also shifted the voltage-dependence of activation by 10 mV in the hyperpolarizing direction. Possible mechanisms by which this amino acid change affects the action of pyrethroids on the sodium channel are discussed.  相似文献   

14.
The human alpha-tropomyosin gene hTMnm has two mutually exclusive versions of exon 5 (NM and SK), one of which is expressed specifically in skeletal muscle (exon SK). A minigene construct expresses only the nonmuscle (NM) isoform when transfected into COS-1 cells and both forms when transfected into myoblasts. Twenty-four mutants were produced to determine why the SK exon is not expressed in COS cells. The results showed that exons NM and SK are not in competition for splicing to the flanking exons and that there is no intrinsic barrier to splicing between the exons. Instead, exon SK is skipped whenever there are flanking introns. Splicing of exon SK was induced when the branch site sequence 70 nucleotides upstream of the exon was mutated to resemble the consensus and when the extremities of the exon itself were changed to the corresponding NM sequence. Precise swaps of the NM and SK exon sequences showed that the exon sequence effect was dominant to that of intron sequences. The mechanism of regulation appears to be unlike that of other tropomyosin genes. We propose that exclusion of exon SK arises because its 3' splicing signals are weak and are prevented by an exon-specific repressor from competing for splice site recognition.  相似文献   

15.
R Sarao  S K Gupta  V J Auld    R J Dunn 《Nucleic acids research》1991,19(20):5673-5679
Two rat brain Na channel alpha-subunit cDNAs, named RII and RIIA, have almost identical coding regions, with a divergence of only 36 nucleotides (0.6%) over a total length of 6015 residues. A cluster of 20 divergent residues occurs within a 90 nucleotide segment of cDNA sequence. We now demonstrate that this 90 nucleotide segment is encoded twice in the RII/RIIA genomic sequence. Furthermore, the mutually exclusive selection of these two exons is developmentally regulated. RII mRNAs are relatively abundant at birth but are gradually replaced by RIIA mRNAs as development proceeds. The two mRNAs also appear to have different regional distributions in the developing rat brain. Strikingly, although 30 amino acids are encoded by each alternative exon, only amino acid position 209 is altered between the two, specifying asparagine in RII and aspartate in RIIA. Alternative RNA splicing may modulate the RII/RIIA sodium channel properties during neuronal development.  相似文献   

16.
17.

Background

Genes of advanced organisms undergo alternative splicing, which can be mutually exclusive, in the sense that only one exon is included in the mature mRNA out of a cluster of alternative choices, often arranged in a tandem array. In many cases, however, the details of the underlying biologic mechanisms are unknown.

Results

We describe 'variable window binding' - a mechanism used for mutually exclusive alternative splicing by which a segment ('window') of a conserved nucleotide 'anchor' sequence upstream of the exon 6 cluster in the pre-mRNA of the fruitfly Dscam gene binds to one of the introns, thereby activating selection of the exon directly downstream from the binding site. This mechanism is supported by the fact that the anchor sequence can be inferred solely from a comparison of the intron sequences using a genetic algorithm. Because the window location varies for each exon choice, regulation can be achieved by obstructing part of that sequence. We also describe a related mechanism based on competing pre-mRNA stem-loop structures that could explain the mutually exclusive choice of exon 17 of the Dscam gene.

Conclusion

On the basis of comparative sequence analysis, we propose efficient biologic mechanisms of alternative splicing of the Drosophila Dscam gene that rely on the inherent structure of the pre-mRNA. Related mechanisms employing 'locus control regions' could be involved on other occasions of mutually exclusive choices of exons or genes.  相似文献   

18.
The Down syndrome cell adhesion molecule (Dscam) gene has essential roles in neural wiring and pathogen recognition in Drosophila melanogaster. Dscam encodes 38,016 distinct isoforms via extensive alternative splicing. The 95 alternative exons in Dscam are organized into clusters that are spliced in a mutually exclusive manner. The exon 6 cluster contains 48 variable exons and uses a complex system of competing RNA structures to ensure that only one variable exon is included. Here we show that the heterogeneous nuclear ribonucleoprotein hrp36 acts specifically within, and throughout, the exon 6 cluster to prevent the inclusion of multiple exons. Moreover, hrp36 prevents serine/arginine-rich proteins from promoting the ectopic inclusion of multiple exon 6 variants. Thus, the fidelity of mutually exclusive splicing in the exon 6 cluster is governed by an intricate combination of alternative RNA structures and a globally acting splicing repressor.  相似文献   

19.
Novel splice variants of the alpha(1) subunit of the Ca(v)1.2 voltage-gated Ca(2+) channel were identified that predicted two truncated forms of the alpha(1) subunit comprising domains I and II generated by alternative splicing in the intracellular loop region linking domains II and III. In rabbit heart splice variant 1 (RH-1), exon 19 was deleted, which resulted in a reading frameshift of exon 20 with a premature termination codon and a novel 19-amino acid carboxyl-terminal tail. In the RH-2 variant, exons 17 and 18 were deleted, leading to a reading frameshift of exons 19 and 20 with a premature stop codon and a novel 62-amino acid carboxyl-terminal tail. RNase protection assays with RH-1 and RH-2 cRNA probes confirmed the expression in cardiac and neuronal tissue but not skeletal muscle. The deduced amino acid sequence from full-length cDNAs encoding the two variants predicted polypeptides of 99.0 and 99.2 kDa, which constituted domains I and II of the alpha(1) subunit of the Ca(v)1.2 channel. Antipeptide antibodies directed to sequences in the second intracellular loop between domains II and III identified the 240-kDa Ca(v)1.2 subunit in sarcolemmal and heavy sarcoplasmic reticulum (HSR) membranes and a 99-kDa polypeptide in the HSR. An antipeptide antibody raised against unique sequences in the RH-2 variant also identified a 99-kDa polypeptide in the HSR. These data reveal the expression of additional Ca(2+) channel structural units generated by alternative splicing of the Ca(v)1.2 gene.  相似文献   

20.
Alternative splicing greatly contributes to the structural and functional diversity of voltage-gated sodium channels (VGSCs) by generating various isoforms with unique functional and pharmacological properties. Here, we identified a new optional exon 23 located in the linker between domains II and III, and four mutually exclusive exons (exons 27A, 27B, 27C, and 27D) in domains IIIS3 and IIIS4 of the sodium channel of Liposcelis bostrychophila (termed as LbVGSC). This suggested that more alternative splicing phenomena remained to be discovered in VGSCs. Inclusion of exon 27C might lead to generation of non-functional isoforms. Meanwhile, identification of three alternative exons (exons 11, 13A, and 13B), which were located in the linker between domains II and III, indicated that abundant splicing events occurred in the DSC1 ortholog channel of L. bostrychophila (termed as LbSC1). Exons 13A and 13B were generated by intron retention, and the presence of exon 13B relied on the inclusion of exon 13A. Exon 13B was specifically expressed in the embryonic stage and contained an in-frame stop codon, inclusion of which led to generation of truncated proteins with only the first two domains. Additionally, several co-occurring RNA editing events were identified in LbSC1. Furthermore, remarkable similarity between the structure and expression patterns of LbVGSC and LbSC1 were discovered, and a closer evolutionary relationship between VGSCs and DSC1 orthologs was verified. Taken together, the data provided abundant molecular information on VGSC and DSC1 orthologs in L. bostrychophila, a representative Psocoptera storage pest, and insights into the alternative splicing of these two channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号