首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
AIMS: Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. METHODS AND RESULTS: The keratinase gene with and without leader sequence from the chromosomal DNA of Bacillus licheniformis MKU3 was amplified by PCR and cloned into pET30b and transferred into Escherichia coli BL21. The ker gene without leader sequence only expressed in E. coli and the recombinant strain produced an intracellular keratinase activity of 74.3 U ml(-1). The ker gene was further subcloned into E. coli-Bacillus shuttle vector, pWH1520. Bacillus megaterium ATCC 14945 carrying the recombinant plasmid pWHK3 expressed the ker gene placed under xylA promoter and produced an extracellular keratinase activity of 95 U ml(-1). Response surface methodology (RSM) was employed to optimize the fermentation condition and to improve the level of keratinase production by the recombinant strain. A maximum keratinolytic activity of 166.2 U ml(-1) (specific activity, 33.25 U mg(-1)) was obtained in 18 h of the fermentation carried out with an initial inoculum of 0.4 OD600 nm and xylose concentration of 0.75% w/v. CONCLUSIONS: Bacillus licheniformis keratinase was cloned and successfully expressed using T7 promoter in E. coli and xylose inducible expression system in B. megaterium. Response surface methodology was employed to optimize the process parameters, which resulted in a three-fold higher level of keratinase production by the recombinant B. megaterium (pWHK3) than the wild type strain B. licheniformis MKU3. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that B. megaterium is a suitable host for the expression of cloned genes from heterologous origin. Optimization of fermentation conditions improved the keratinase production by B. megaterium (pWHK3) and suggested that this recombinant strain could be used for the production of keratinase.  相似文献   

2.
【目的】通过对一株地衣芽孢杆菌来源的角蛋白酶N端进行分子改造,研究其对角蛋白酶活力和热稳定性的影响,进而提高角蛋白酶的热稳定性。【方法】将角蛋白酶N端前5个氨基酸进行分段缺失,并通过序列比对将N端的前5个氨基酸替换为来源于Thermoactinomyces vulgaris的嗜热蛋白酶的N端,将野生型和突变体角蛋白酶基因在枯草芽孢杆菌WB600中进行表达,并对重组酶进行纯化与酶学性质研究。【结果】角蛋白酶N端不同长度的缺失大幅度地降低了角蛋白酶的活力,其中缺失前5个氨基酸完全丧失了酶活力。将角蛋白酶N端前5个氨基酸替换为嗜热蛋白酶N端前12个氨基酸,虽然降低了近70%的活力,但是却增加了角蛋白酶的热稳定性,60°C条件下的半衰期t1/2由原来的9 min提高到20 min。【结论】角蛋白酶的N端对其酶活力具有较大的影响,与嗜热蛋白酶来源的N端进行替换可以有效提高角蛋白酶的热稳定性。  相似文献   

3.
The ker gene encoding pre-pro keratinase of Bacillus licheniformis MKU3 was cloned with xylose inducible promoter (PxylA) or -amylase promoter (PamyL) or both in Escherichia coli–Bacillus shuttle vector, pWH1520 generating recombinant plasmids pWHK3, pWAK3 and pWXAK3 respectively. Compared with Bacillius megaterium MS941 (pWXAK3) expressing ker gene with PxylAPamyL promoters, B. megaterium MS941 (pWAK3) with PamyL displayed higher keratinase yield (168.6 U/ml) and specific activity (14.59 U/mg) after 36 h of growth in LB medium, however the keratinase yield decreased in the culture grown in LB medium supplemented with starch or xylose or both. A maximum yield of 186.3 U/ml with specific activity of 17.25 U/mg was obtained from xylose induced keratinase expression in B. megaterium MS941 (pWHK3) grown for 24 h. The recombinant plasmids were stably maintained with sustained expression of keratinase for about 60 generations in B. megaterium MS941 rather than in B. megaterium 14945.  相似文献   

4.
A keratinase was isolated from the culture medium of feather-degrading Bacillus licheniformis PWD-1 by use of an assay of the hydrolysis of azokeratin. Membrane ultrafiltration and carboxymethyl cellulose ion-exchange and Sephadex G-75 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinase relative to that in the original medium was approximately 70-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Sephadex G-75 chromatography indicated that the purified keratinase is monomeric and has a molecular mass of 33 kDa. The optimum pH and the pI were determined to be 7.5 and 7.25, respectively. Under standard assay conditions, the apparent temperature optimum was 50°C. The enzyme is stable when stored at −20°C. The purified keratinase hydrolyzes a broad range of substrates and displays higher proteolytic activity than most proteases. In practical applications, keratinase is a useful enzyme for promoting the hydrolysis of feather keratin and improving the digestibility of feather meal.  相似文献   

5.
Two alkaline keratinases-I and II secreted by Bacillus halodurans PPKS-2 were purified and characterized. Both the keratinases were purified using ammonium sulfate, DEAE-Sephadex followed by Sephadex G-200 column chromatography. The purification was 21.5-fold and 11.17% yield for keratinase-I and 23.7-fold with yield 18.46 for keratinase-II and its molecular weights 30 and 66 kDa. Both purified enzymes were relatively stable over a broad pH range 7.0–13.0 and optimally active at pH 11.0 and 60–70 °C. Keratinase-II was found to be more stable at 70 °C for 3 h and retained 100% of its activity, whereas keratinase-I lost 10% activity. Keratinase-I had high keratin disulfide reductase activity with low keratinase activity whereas keratinase-II had high keratinase activity with low keratin disulfide reductase activity. Keratinase activities of both the enzymes were completely inhibited by PMSF at 1 mM, whereas keratin disulfide reductase activity of keratinase-I was not affected. Enzymes were active and stable in the presence of the surfactants, bleaching agents (20% H2O2), commercial detergents (1%), and SDS (20%). Both the enzymes were partially sequenced and found that keratinase-I and II had a homology with disulfide reductases and serine type of proteases, respectively.  相似文献   

6.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

7.
8.
Native proteolytic microorganisms were isolated from the hornmeal, which is a product obtained by treatment of horns and hoofs with steam under high pressure. Keratinolytic activities of these organisms were screened in mineral salt medium with 1% hornmeal. Bacillus subtilis MTCC (9102), a keratinase-producing organism causing extensive degradation of hornmeal has been identified. Keratinase was purified (45-fold) by ion exchange, and gel filtration chromatography. Among the keratinases produced by the various organisms, keratinase from the Bacillus subtilis strain reported by us was found to have a molecular weight range between 64 and 69 kDa and high activity in the pH range between 5 and 7, with maximum activity at pH 6.0 and at an optimum temperature of 40°C. It remained stable up to 70°C. The keratinase activity was completely inhibited by ethylenediamine tetraacetic acid (EDTA), and 1 10-phenanthroline, and remained unaffected by phenylmethanesulfonyl fluoride (PMSF, relative activity: 93%), whereas iodoacetamide inhibited considerably. Zinc, magnesium, calcium, manganese, and nickel were found to enhance the enzyme activity, whereas mercury and copper inhibited its activity completely. The keratinolytic metalloprotease from native Bacillus subtilis differed from the other serine proteases. It may have potential applications in the bioconversion of keratinous wastes and eco-friendly dehairing in the leather industry.  相似文献   

9.
The gene kerA (1,047 bp) encoding the main keratinase from Bacillus licheniformis was cloned into two conventional vectors, pET30α and pET32α, and expressed in Escherichia coli. From SDS-PAGE analysis, the recombinant keratinases were 45 and 55 kDa. They had different optimal pH values (7.5 and 8.5) but the same optimum temperature of 50 °C. The recombinant keratinase produced in E. coli pET30α-kerA was more stable than that produced in E. coli pET32α-kerA, and retained approx. 70 % of its total enzyme activity after 30 min at 70 °C.  相似文献   

10.
Aims:  To determine the ability of a novel Bacillus subtilis AMR isolated from poultry waste to hydrolyse human hair producing peptidases including keratinases and hair keratin peptides.
Methods and Results:  The Bacillus subtilis AMR was identified using biochemical tests and by analysis of 16S rDNA sequence. The isolate was grown in medium containing human hair as the sole source of carbon and nitrogen. The supplementation of hair medium (HM) with 0·01% yeast extract increased the keratinolytic activity 4·2-fold. B. subtilis AMR presented high keratinase production on the 8th day of fermentation in hair medium (HM) supplemented with 0·01% yeast extract (HMY) at pH 8·0. Keratinase yield was not correlated with increase in biomass. Zymography showed keratin-degrading peptidases migrating at c. 54, 80 and 100 kDa and gelatin-degrading bands at c. 80, 70 63, 54 32 and 15 kDa. Keratinases were optimally active at 50°C and pH 9·0 and was fully inhibited by the serine proteinase inhibitor (PMSF). Scanning electron microscopy showed complete degradation of the hair cuticle after exposure to B. subtilis AMR grown in HMY. MALDI-TOF analysis of culture supernatant containing peptides produced during enzymatic hydrolysis of hair by B. subtilis AMR revealed fragments in a range of 800–2600 Da.
Conclusions:  This study showed that B. subtilis AMR was able to hydrolyse human hair producing serine peptidases with keratinase and gelatinase activity as well as hair keratin peptides.
Significance and Impact of the Study:  This is the first report describing the production and partial characterization of keratinases by a B. subtilis strain grown in a medium containing human hair . These data suggest that peptides obtained from enzymatic hair hydrolysis may be useful for future applications on pharmaceutical and cosmetic formulations.  相似文献   

11.
张佳瑜  吴丹  李兆丰  陈晟  陈坚  吴敬 《生物工程学报》2009,25(12):1948-1954
通过PCR扩增软化芽孢杆菌α-CGT酶基因,将基因片段分别克隆到毕赤酵母表达载体pPIC9K和大肠杆菌-枯草杆菌穿梭载体pMA5中,分别转化毕赤酵母KM71和枯草杆菌WB600。结果表明,重组毕赤酵母发酵上清液中α-CGT酶活性仅0.2U/mL,重组枯草杆菌产酶达到1.9U/mL。对重组枯草杆菌发酵条件进行了优化,当以TB为出发培养基,初始pH6.5,温度为37oC时,摇瓶培养24h后α-CGT酶环化活性达到4.5U/mL(水解活性为3200IU/mL),是野生菌株软化芽孢杆菌表达量的9.8倍。  相似文献   

12.
Heterologous expression of the bacterial enzyme haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 in methylotrophic yeast Pichia pastoris is reported. The haloalkane dehalogenase gene linB was subcloned into the pPICZalphaA vector and integrated into the genome of P. pastoris. The recombinant LinB secreted from the yeast was purified to homogeneity and biochemically characterized. The deglycosylation experiment and mass spectrometry measurements showed that the recombinant LinB expressed in P. pastoris is glycosylated with a 2.8 kDa size of high mannose core. The specific activity of the glycosylated LinB was 15.6 +/- 3.7 micromol/min/mg of protein with 1,2-dibromoethane and 1.86 +/- 0.36 micromol/min/mg of protein with 1-chlorobutane. Activity and solution structure of the protein produced in P. pastoris is comparable with that of recombinant LinB expressed in Escherichia coli. The melting temperature determined by the circular dichroism (41.7+/-0.3 degrees C for LinB expressed in P. pastoris and 41.8 +/- 0.3 degrees C expressed in E. coli) and thermal stability measured by specific activity to 1-chlorobutane were also similar for two enzymes. Our results show that LinB can be extracellularly expressed in eukaryotic cell and glycosylation had no effect on activity, protein fold and thermal stability of LinB.  相似文献   

13.
Seo KH  Rhee JI 《Biotechnology letters》2004,26(19):1475-1479
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the alpha-factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg(-1) protein which was more than a recombinant P. pastoris GS115 (552 U mg(-1) protein) or KM71H (539 U mg(-1) protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg(-1) protein by P. pastoris GS115, 1176 U mg(-1) protein by P. pastoris KM71H and 1522 U mg(-1) protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 degrees C) than the wild-type PLC from B. cereus . Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co(2+) and Mn(2+) etc., also influenced the activity of the recombinant PLCs.  相似文献   

14.
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid sequences). Studies of substrate specificity revealed that skin constituents, such as the stratum corneum, and appendages such as nail but not hair, feather, and wool were efficiently hydrolyzed by the P. marquandii keratinase and about 40% less by the D. microsporus keratinase. Hydrolysis of keratin could be increased by the presence of reducing agents. The catalytic properties of the keratinases were studied and compared to those of some known commercial proteases. The profile of the oxidized insulin B-chain digestion revealed that both keratinases, like proteinase K but not subtilisin, trypsin, or elastase, possess broad cleavage specificity with a preference for aromatic and nonpolar amino acid residues at the P-1 position. Kinetic studies were performed on a synthetic substrate, succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The keratinase of P. marquandii exhibited the lowest Km among microbial keratinases reported in the literature, and its catalytic efficiency was high in comparison to that of D. microsporus keratinase and proteinase K. All three keratinolytic enzymes, the keratinases of P. marquandii and D. microsporus as well as proteinase K, were significantly more active on keratin than subtilisin, trypsin, elastase, chymotrypsin, or collagenase.  相似文献   

15.
The keratinase production by the thermophilic actinomycete strain Thermoactinomyces candidus was induced by sheep wool as the sole source of carbon and nitrogen in the cultivation medium. For complete digestion of wool by the above strain, both keratinolytic serine proteinase and cellular reduction of disulfide bonds were involved. Evidence was presented that substrate induction was a major regulatory mechanism and the keratinase biosynthesis was not completely repressed by addition of other carbon (glucose) and nitrogen (NH4C1) sources. The enzyme was purified 62-fold by diethylaminoethyl-anion exchange and Sephadex G-75 gel permeation chromatographies. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified keratinase is a monomeric enzyme with a molecular mass of 30 kDa. The pH and temperature optima were determined to be 8.6 and 70 degrees C, respectively. The purified thermophilic keratinase catalyses the hydrolysis of a broad range of substrates and displays higher proteolytic activity against native keratins than other proteinases. Ca2+ was found to have a stabilizing effect on the enzyme activity at elevated temperatures.  相似文献   

16.
Summary Isolation and identification of a thermotolerant feather-degrading bacterial strain from Thai soil as well as purification and properties of its keratinase were investigated. The thermotolerant bacterium was identified as Bacillus licheniformis. The keratinase was purified to homogeneity by three-step chromatography. The purified enzyme exhibited a high specific activity (218 U mg−1) with 86-fold purification and 25% yield. The enzyme was monomeric and had a molecular mass of 35 kDa. The optimum pH and temperature for the enzyme were 8.5 and 60 °C, respectively. The enzyme activity was significantly inhibited by PMSF and partly inhibited by EDTA and iodoacetamide, but was stimulated by metal ions. It hydrolysed soluble proteins with a relative activity of 4–100% and insoluble proteins, including keratins, with a relative activity of 3–35%. Therefore, the enzyme could improve the nutritional value of meat- and poultry-processing wastes containing keratins, collagen and gelatin.  相似文献   

17.
Interleukin-2 (IL-2) is a vital cytokine secreted by activated T lymphocytes, and plays an important role in the regulation of cellular functions and immunity of animals. In this study, the recombinant duck IL-2 (rduIL-2) was secretory expressed in Pichia pastoris (P. pastoris). The recombinant P. pastoris strain was cultured in shake flasks and then scaled up in a 5.0-l bioreactor. The result showed that the maximal fresh-cell-weight of 594.1 g/l and the maximal OD600 of 408 were achieved in the bioreactor. The rduIL-2 was purified by two steps of purification procedures, and approximately 311 mg of rduIL-2/L fermentation supernatant was obtained. SDS-PAGE showed that the purified rduIL-2 constituted a homogeneous band of ~16 kDa or ~14 kDa corresponding to the glycosylated or non-glycosylated duIL-2 protein in size, respectively. The bioactivity of rduIL-2 was determined by lymphocyte proliferation assay. The result indicated that the rduIL-2 greatly promoted the proliferation of ConA-stimulated lymphocytes in vitro. The P. pastoris expression system described here could provide promising, inexpensive, and large-scale production of the rduIL-2, which lays the foundation for development of novel immunoadjuvants to enhance both the immunity of ducks against various infectious pathogens and vaccine efficacy.  相似文献   

18.
The chitin deacetylase gene from Colletotrichum lindemuthianum UPS9 was isolated and cloned in Pichia pastoris as a tagged protein with six added terminal histidine residues. The expressed enzyme was recovered from the culture supernatant and further characterized. A single-step purification based on specific binding of the histidine residues was achieved. The purified enzyme has a molecular mass of 25 kDa and is not glycosylated as determined by mass spectrometry. The activity of the recombinant chitin deacetylase on chitinous substrates was investigated. With chitotetraose as substrate, the optimum temperature and pH for enzyme activity are 60 degrees C and 8.0, respectively. The specific activity of the pure protein is 72 U/mg. One unit of enzyme activity is defined as the amount of enzyme that produces 1 micromol of acetate per minute under the assay conditions employed. The enzyme activity is enhanced in the presence of Co2+ ions. A possible use of the recombinant chitin deacetylase for large-scale biocatalytic conversion of chitin to chitosan is discussed.  相似文献   

19.
Bacillus amyoliquefaciens DL-3纤维素酶具有热稳定高比活多功能的酶学特性,本文根据该酶的氨基酸序列合成了其编码基因(cel),构建了pPIC9K-cel表达载体,并用P.pastoris进行了表达。工程菌株三角瓶发酵酶活性达0.50 U/mL,酶解滤纸的产物为低聚糖,表明人工合成的热稳定高比活纤维素酶基因在P.pastoris中可以正常表达、加工及分泌,重组酶的分子量由天然酶的53 kDa增加至68 kDa,糖基化严重。  相似文献   

20.
AIMS: The aim of this study was to determine the keratinolytic ability of a range of bacteria and subsequently, to characterize the keratinase showing the greatest biotechnological potential. METHODS AND RESULTS: Nine bacteria, reported to produce extracellular proteases, were screened for production of keratinases. Of these, Lysobacter NCIMB 9497 exhibited the highest keratinolytic activity. The keratinase from this strain (Mr 148 kDa) was purified and characterized. Optimum activity occurred at 50 degrees C; no inhibition was demonstrated by phenylmethylsulphonyl fluoride (PMSF), but inhibition by EDTA was demonstrated. CONCLUSIONS: This study indicates that keratinase is a metalloprotease with a high degree of keratinolytic activity and stability. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first detailed report of a metalloprotease with keratinolytic activity. The novel reaction mechanism, degree of keratinolytic activity and stability indicate considerable biotechnological potential in the leather industry, and in the processing of poultry waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号