首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLDα, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLDα revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLDα expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLDα was up-regulated in shoots. Subsequently, we generated TaPLDα-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLDα in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLDα-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLDα-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLDα-overexpressing plants than in wild type. Taken together, our results indicated that TaPLDα can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.  相似文献   

2.
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.  相似文献   

3.
In planta Agrobacterium-mediated transformation combined with a soil-based herbicide selection for transgenic plants was used to recover large numbers of transgenic Arabidopsis plants for functional genomic studies. A tissue-culture-free system for generating transgenic plants was achieved by infiltrating Arabidopsis plants with Agrobacterium tumefaciens harboring a binary T-DNA vector containing the phosphinothricin acetyltransferase gene from Streptomyces hygroscopicus, and by selecting transgenic Arabidopsis growing in soil by foliar application of the herbicide Finale (phosphinothricin). Analysis of herbicide-resistant plants indicated that all were transgenic and that the T-DNA transformation process occurred late during flower development, resulting in a preponderance of independently derived T-DNA insertions. T-DNA insertions were usually integrated in a concatenated, rearranged form, and using linkage analysis, we estimated that T1 plants carried between one and five T-DNA loci. Using pooling strategies, both DNA and seed pools were generated from about 38,000 Arabidopsis plants representing over 115,000 independent T-DNA insertions. We show the utility of these transgenic lines for identifying insertion mutations using gene sequence and PCR-based screening. Electronic Publication  相似文献   

4.
5.
6.

Key message

Transgenic Arabidopsis and lettuce plants overexpressing AtHSP17.8 showed ABA-hypersensitive but abiotic stress-resistant phenotypes. ABA treatment caused a dramatic induction of early ABA-responsive genes in AtHSP17.8 -overexpressing transgenic lettuce.

Abstract

Plant small heat shock proteins function as chaperones in protein folding. In addition, they are involved in responses to various abiotic stresses, such as dehydration, heat and high salinity in Arabidopsis. However, it remains elusive how they play a role in the abiotic stress responses at the molecular level. In this study, we provide evidence that Arabidopsis HSP17.8 (AtHSP17.8) positively regulates the abiotic stress responses by modulating abscisic acid (ABA) signaling in Arabidopsis, and also in lettuce, a heterologous plant when ectopically expressed. Overexpression of AtHSP17.8 in both Arabidopsis and lettuce leads to hypersensitivity to ABA and enhanced resistance to dehydration and high salinity stresses. Moreover, early ABA-responsive genes, ABI1, ABI5, NCED3, SNF4 and AREB2, were rapidly induced in AtHSP17.8-overexpressing transgenic Arabidopsis and lettuce. Based on these data, we propose that AtHSP17.8 plays a crucial role in abiotic stress responses by positively modulating ABA-mediated signaling in both Arabidopsis and lettuce. Moreover, our results suggest that stress-tolerant lettuce can be engineered using the genetic and molecular resources of Arabidopsis.  相似文献   

7.
8.
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.  相似文献   

9.
Ubiquitination is one of the most common posttranslational modifications. A series of E3 ligases are implicated in plant abiotic stress signaling, regulating the degradation of multiple specific target proteins. Here, we showed that a novel gene ABA-RESPONSE KELCH PROTEIN 1 (AtARKP1), which encodes an F-box subunit of Skp-cullin-F-box (SCF) ubiquitin ligase complex, was localized in the nucleus and could be induced by phytohormone abscisic acid (ABA) in Arabidopsis. ARKP1 interacted with ASK1 and ASK2, which tethered the rest of the complex to an F-box protein, suggesting that they might form an SCF ubiquitin ligase complex. Further analysis revealed that ARKP1 was exclusively expressed in the seed, rosette leaf, and root. arkp1 T-DNA insertion mutant plants were insensitive to ABA, displaying reduced ABA-mediated inhibition of seed germination, root elongation, and water loss rate of detached leaves. In contrast, transgenic plants showed enhanced sensitivity to ABA and tolerance to water deficit. Accordingly, the expressions of ABA and drought responsive marker genes were markedly upregulated in ARKP1 overexpressing plants than the wild-type and arkp1 mutant plants. Taken together, our findings suggest that AtARKP1 plays a positive role in ABA signaling network.  相似文献   

10.
11.
12.
13.
An Arabidopsis thaliana mutant, exhibiting anther specific GUS expression, identified from a mutant population of Arabidopsis tagged with a promoterless β-glucuronidase (GUS), carries the T-DNA insertions at two distinct loci. We have been able to segregate the two inserts from each other by backcrossing with wild type plants. The insertion responsible for anther specific GUS expression in segregating population has been identified and confirmed to be in the upstream region of a putative peroxidase gene, AT2G24800. Here we report detailed histochemical and molecular characterization of the mutant Anth85, carrying a single insertion of T-DNA in the peroxidase gene. In Anth85, the GUS expression was observed in the anthers and rosette of the young seedlings. The expression of GUS in the anthers was restricted to the tapetum and microspores. The mutant has no developmental defects and the gene appears to be redundant for normal plant growth. Cloning of upstream region and detailed deletion study of upstream region in transgenic plants is likely to lead to the identification of anther specific promoter elements.  相似文献   

14.
15.
陈金峰  胡斌杰 《植物研究》2008,28(2):232-235
酶母的GYP能够加速小G蛋白YPT内在的GTPase的活性,是因为其基因所编码的氨基酸序列中具有保守的TBC区域,拟南芥AtGAPs的氨基酸序列中也具有此保守区,但对于它们的生物学功能,特别对胁迫的反应却研究不多。我们鉴定得到了RabGAP7基因的纯合突变体。通过根伸长和失水实验发现,与野生型相比,突变体幼苗对ABA和脱水不敏感。另外,表达分析表明,该基因在转录水平上对GPA1和Rab7起到负调控作用。这些结果暗示着RabGAP7可能通过调节G蛋白来参与了ABA反应。  相似文献   

16.
The APETALA2/ethylene-responsive element binding factors (AP2/ERF) play central roles in the stress response in plants. In this study, we identified and isolated a novel salt stress-related gene, LcERF080, that encodes an AP2/ERF protein in Lotus corniculatus cultivar Leo. LcERF080 was classified into the B-4 group of the ERF subfamily based on multiple sequence alignment and phylogenetic characterization. Expression of LcERF080 was strongly induced by salt, abscisic acid, 1-aminocyclopropane-1-carboxylic acid, methyl jasmonate, and salicylic acid stresses. Subcellular localization assay confirmed that LcERF080 is a nuclear protein. LcERF080 overexpression in Arabidopsis resulted in pleiotropic phenotypes with a higher seed germination rate and transgenic plants with enhanced tolerance to salt stress. Further, under stress conditions, the transgenic lines exhibited elevated levels of soluble sugars and proline as well as relative moisture contents but a lower malondialdehyde content than in control plants. The expression levels of hyperosmotic salinity response genes COR15A, RD22, and P5CS1 were found to be elevated in the LcERF080-overexpressing Arabidopsis plants compared to the wild-type plants. These results reveal that LcERF080 is involved in the responses of plants to salt stress.  相似文献   

17.
18.
Heat shock factors (HSFs) in plants regulate heat stress response by mediating expression of a set of heat shock protein (HSP) genes. In the present study, we isolated a novel heat shock gene, TaHSF3, encoding a protein of 315 amino acids in wheat. Phylogenetic analysis showed that TaHSF3 belonged to HSF class B2. Subcellular localization analysis indicated that TaHSF3 localized in nuclei. TaHSF3 was highly expressed in wheat spikes and showed intermediate expression levels in roots, stems, and leaves under normal conditions. It was highly upregulated in wheat seedlings by heat and cold and to a lesser extent by drought and NaCl and ABA treatments. Overexpression of TaHSF3 in Arabidopsis enhanced tolerance to extreme temperatures. Frequency of survival of three TaHSF3 transgenic Arabidopsis lines was 75–91 % after heat treatment and 85–95 % after freezing treatment compared to 25 and 10 %, respectively, in wild-type plants (WT). Leaf chlorophyll contents of the transformants were higher (0.52–0.67 mg/g) than WT (0.35 mg/g) after heat treatment, and the relative electrical conductivities of the transformants after freezing treatment were lower (from 17.56 to 18.6 %) than those of WT (37.5 %). The TaHSF3 gene from wheat therefore confers tolerance to extreme temperatures in transgenic Arabidopsis by activating HSPs, such as HSP70.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号