首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
1. The leaf beetle, Chrysomela lapponica, originally uses the salicyl glucosides (SGs) of its host plants to sequester salicylaldehyde, which serves as a defence against generalist enemies but attracts specialist enemies. However, some populations of C. lapponica have shifted to SG‐poor hosts, and their secretions do not contain salicylaldehyde. 2. In was suggested that beetles shift to SG‐poor hosts to escape from specialist enemies. To test this hypothesis, we compared field mortality between two populations of C. lapponica that were associated with SG‐rich willow, Salix myrsinifolia (Kola Peninsula and Finland) and two populations that fed on SG‐poor willows, S. glauca (Ural) and S. caprea (Belarus). 3. Mortality from generalist enemies was significantly higher in Belarus than in three other populations, whereas mortality from specialists did not differ among populations. A specialist predator (syrphid fly larvae, Parasyrphus nigritarsis) and specialist parasitoids (phorid flies, Megaselia spp.) were attracted to the secretions of larvae reared on both SG‐rich and SG‐poor hosts. 4. Feeding on leaves of S. caprea and S. myrsinifolia both previously damaged by leaf puncturing and by the larvae of potentially competing species Chrysomela vigintipunctata, decreased the weight and prolonged the development of C. lapponica. 5. Thus, populations of C. lapponica that have shifted to SG‐poor willow species did not obtain enemy‐free space because specialist enemies have developed adaptations to herbivores that switched to a novel host plant. We suggest that in some populations host plant shift was favoured by interspecific competition with the early season SG‐using specialist, C. vigintipunctata.  相似文献   

2.
Zvereva EL  Rank NE 《Oecologia》2003,135(2):258-267
Larvae of the leaf beetle Chrysomela lapponica obtain salicyl glucosides (SGs) from the host plant to produce a defensive secretion with salicylaldehyde. In northern Russia, larvae and pupae experience high parasitism by the phorid fly Megaselia opacicornis and tachinid fly Cleonice nitidiuscula. We compared the suitability of the SG-rich Salix borealis and SG-poor S. caprea and S. phylicifolia to Ch. lapponica and tested whether enemy pressure on Ch. lapponica varies among host species that differ in SG content. In the laboratory, survival of Ch. lapponica larvae was higher on S. borealis than on S. caprea and S. phylicifolia, while adult body mass was higher on S. borealis and S. caprea than on S. phylicifolia. In the field, parasitism by both M. opacicornis and Cl. nitidiuscula was greater on beetles from S. borealis than from the SG-poor S. caprea or S. phylicifolia. In a laboratory choice test, the pupal parasitoid M. opacicornis laid similar numbers of eggs on beetles reared on SG-rich and SG-poor willows, suggesting that the host plant-derived defence is not effective against this parasitoid. In a field enemy-exclusion experiment, beetle survival was greatly enhanced by the exclusion of enemies, but survival rates did not differ between S. borealis and S. caprea, although larvae developed faster on S. borealis. On the other hand, parasitism and predation were observed more often on S. borealis than on S. caprea. Thus, beetle larvae perform better but also suffer higher predation and parasitism on S. borealis than on SG-poor willows. Ch. lapponica does not appear to obtain enemy-free space by feeding on SG-rich willow species.  相似文献   

3.
What is the role of time-constraints in determining geographical variation in the resource use of organisms? One hypothesis concerning phytophagous insects predicts a local narrowing of host plant range at localities where a short development time is important (because an additional generation per season is only just possible), with increased specialization on host plants permitting fast development. To test this hypothesis, populations of the polyphagous comma butterfly (Nymphalidae: Polygonia c-album) from five European areas (localities in Norway, Sweden, England, Belgium and Spain) were sampled and the preferences of laboratory-reared female butterflies were investigated, by a choice test between Salix caprea and the fastest host Urtica dioica. The results suggest that females of both of two northern univoltine populations (time-stressed from Norway and time-relaxed from Sweden) accept the slow host S. caprea to a higher degree than females of more southern populations with partial additional generations (time-stressed). We thus found partial support for the tested hypothesis, but also conflicting results that cast doubt on its broad generality. Moreover, a split-brood investigation on Swedish stock demonstrated that larval performance is similar on S. caprea and U. dioica early in the summer, but that later in the season S. caprea is a much inferior host. This is reflected by a seasonal trend towards specialization on U. dioica and also provides a simpler explanation than the time-constraints theory for avoidance of S. caprea (and other woody hosts) in areas with two or more generations of insects per year, illustrating the importance of plant phenology as a constraint on resource use in phytophagous insects. Absolute and relative larval performance on the two hosts varied little among populations across Europe, but lower survival on S. caprea in the populations most specialized on U. dioica and related plants may be indicative of performance trade-offs.  相似文献   

4.
The leaf beetle species Chrysomela lapponica, which belongs to the so‐called C. interrupta group, forms distinct allopatric populations either on willows (Salicaceae) or birches (Betulaceae). It was recently suggested that, on several occasions, host plant shifts from Salicaceae to Betulaceae occurred independently within the C. interrupta group. Our study aims to elucidate bottom‐up effects of the host plants that might have shaped the evolution of host plant specialization in the populations of C. lapponica, and thus, to shed some light on the driving forces of host shifts within the C. interrupta group, too. We compared the oviposition behaviour and performance of two C. lapponica populations, one of which has adapted to birches and the other to willows. The studies were conducted under laboratory conditions, eliminating the impact of natural enemies. Experiments involving the transfer of individuals of the birch‐specialized population to willows and vice versa with individuals of the willow‐specialized population to birches aimed to examine the plasticity in host plant use. Females of each population almost exclusively chose their natural host plant for oviposition, when offering birch and willow in dual choice experiments. When specimens of the two C. lapponica populations were reared on their natural host plants, the birch specialists suffered higher mortality, needed a longer period of development and produced less larval defensive secretion than the willow specialists. When the birch specialists were fed with willow, these performance parameters decreased even more. Other parameters, such as body weight and fecundity, did not differ between birch and willow specialists when they were fed with their natural host plant. While individuals of the birch‐specialized population could be reared on willow, all neonate larvae from the willow‐specialized population died after being transferred to birch. The significance of these bottom‐up effects for the evolution of host plant specialization in C. lapponica is discussed.  相似文献   

5.
M. Rowell-Rahier 《Oecologia》1984,64(3):375-380
The specialisation of the beetles from the Petite Camargue on Salix nigricans was confirmed by laboratory food-plant trials. When S. nigricans is not present in the choice offered, other Salix species are accepted and the following ranking, in decreasing order of preference, can be established: S. nigricans, S. purpurea, Populus nigra, P. tremula, S. alba, s. caprea and S. cinerea. S. nigricans leaves are the richest in salicin of the 4 most acceptable plant species. The 3 least acceptable species have the undersurface of their leaves covered with trichomes.The food-plant preferences of 2 populations from central Europe and 2 from Belgium differ both in the field and in the laboratory. The level of dietary specialisation also differs from population to population. The populations originating from localities (Oignie in Belgium and the Petite Camargue in central Europe) where their favorite food-plants in the field and in the laboratory (respectively P. tremula and S. nigricans) are abundant, show clearer preferences than the populations from localities (Grammont in Belgium and Herrliberg in central Europe) where these plants are scarcer or even absent, due to human influence.The Salicaceae tested, as seen by the more specialised beetles of Oignie and the Petite Camargue, include both a strongly preferred plant (P. tremula or S. nigricans) and two or three strongly disliked species (S. alba, S. caprea and S. cinerea). for these beetles, laboratory preferences and field observations of host plant species are in agreement. It is interesting that S. nigricans, although not present in Belgium, is the second most preferred food of the Belgian beetles in laboratory trials. Similarly, P. tremula, the preferred food of the Belgian beetles, is well accepted by the central European beetles.For the less specialised beetles of Grammont and Herrliberg, the same Salicaceae include strongly disliked speicies but no single strongly preferred species. In the Herrliberg population, with rather poorly defined preferences, preference for the favorite species of the more specific population from the same geographical area (Petite Camargue) can readily be produced in the laboratory by conditioning.  相似文献   

6.
Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA‐seq. Differential expression analyses in the antennae revealed significant upregulation of one minus‐C OBP (ClapOBP27) and one CSP (ClapCSP12) in the willow feeders. In contrast, one OR (ClapOR17), four minus‐C OBPs (ClapOBP02, 07, 13, 20), and one plus‐C OBP (ClapOBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow‐specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)‐α‐farnesene (high in willow) or 4,8‐dimethylnona‐1,3,7‐triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an “olfactory bridge” for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus‐C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.  相似文献   

7.
We studied preference for willows along a pollution gradient on the Kola Peninsula, Russia, by the leaf beetle, Melasoma lapponica. Multiple tests with leaf disks demonstrated low preference for Salix borealis, S. caprea and S. phylicifolia from the plot situated 14 km from the smelter, in comparison with conspecific plants from plots situated at 1 and 29 km distances. This pattern was observed when testing beetles orginating from any plot both in 1993 and 1994, using both young and mature leaves of S. borealis. Although fumigation of S. borealis with realistic SO2 concentration (100 g/m3) increased plant palatability, preference for plants from our study plots did not correlate with plot-specific mean SO2 concentrations. Furthermore, no correlation with foliar concentrations of the main metal pollutants (Ni and Cu) was found. Palatability of plants was negatively correlated with population density of M. lapponica, which peaked in the moderately polluted plot 14 km from the smelter. Within this plot, beetles clearly preferred non-damaged bushes of S. borealis to previously damaged bushes. We therefore conclude that low preference of S. borealis from the moderately polluted area was caused by plant resistance induced by severe damage from M. lapponica in previous years rather than by pollution impact. However, S. caprea and S. phylicifolia had little damage from M. lapponica, and low palatability of these species in the moderately polluted plot suggests changes in plant quality similar to changes in heavily damaged bushes of S. borealis.  相似文献   

8.
We compared allozyme variation in the two arctic–alpine plants Diapensia lapponica var. obovata and Empetrum nigrum var. japonicum between Sakhalin Island in Russian Far East, within their range core, and the Korean island of Jeju, their world’s southernmost distribution. For D. lapponica var. obovata, Sakhalin populations harbored moderate levels of within-population genetic variation and low among-population divergence, whereas extremely low levels of within-population genetic diversity and high among-population differentiation were found in Jeju Island populations. In contrast, we found moderate levels of within-population variation and low among-population differentiation in E. nigrum var. japonicum in both northern populations (those of Sakhalin and an additional population from northern Japan) and Jeju Island populations. Under a similar scenario of immigration history of arctic–alpine plants on Jeju Island during the glacial periods of the Pleistocene and local persistence through glacial/interglacial cycles, the contrasting genetic structure between D. lapponica var. obovata and E. nigrum var. japonicum is mainly attributable to their different life-history, ecological, and demographic traits: (1) hermaphroditic versus monoecious, dioecious or polygamous, (2) seeds with no adaptations for long-distance dispersal versus berry-like drupes dispersed by animals and birds, and (3) a very small patch near the peak of Mt. Halla with a few hundred individuals versus a relatively continuous distribution around the peak of Mt. Halla with numerous individuals. From a conservation perspective, in situ and ex situ conservation measures should be strengthened for D. lapponica var. obovata on Jeju Island given their extreme rarity there.  相似文献   

9.
A contemporary outcome of dynamic host–parasite coevolution can be driven by the adaptation of a parasite to exploit its hosts at the population and species levels (parasite specialisation) or by local host adaptations leading to greater host resistance to sympatric parasite populations (host resistance). We tested the predominance of these two scenarios using cross-infection experiments with two geographically distant populations of the rose bitterling, Rhodeus ocellatus, a fish brood parasite of freshwater mussels, and four populations of their mussel hosts (two Anodonta woodiana and two Unio douglasiae populations) with varying degrees of geographic sympatry and local coexistence. Our data support predictions for host resistance at the species level but no effect of local coexistence between specific populations. Rhodeus ocellatus showed a preference for allopatric host populations, irrespective of host species. Host mussel response, in terms of ejection of R. ocellatus eggs, was stronger in the more widespread and abundant host species (A. woodiana) and this response tended to be higher in sympatric populations. These outcomes provide support for the importance of host resistance in bitterling oviposition-site decisions, demonstrating that host choice by R. ocellatus is adaptive by minimizing egg ejections. These findings imply that R. ocellatus, and potentially other bitterling species, may benefit from exploiting novel hosts, which may not possess appropriate adaptive responses to parasitism.  相似文献   

10.
The present study attempts to elucidate possible microevolutionary adaptations of life-history traits of high-latitude populations of the holarctic, littoral oribatid mite Ameronothrus lineatus by comparing arctic and temperate populations. Additionally, the paper provides an overview of the limited research on general ecology and population biology of arctic populations. In the Arctic the larviparous A. lineatus has a 5-year life cycle (larva-to-larva), and adults survive a further 2–3 years. High survival to maturity is consistent with a low lifetime reproductive output of ca. 20 larvae. The life history can be regarded as an extreme version of the typical oribatid life history. However, several life-history features suggest specific adaptations of arctic populations. In particular, the pre-moult resting stage is synchronized with the warmest part of the arctic summer, which shortens this vulnerable part of development. High reproductive investment by females at relatively low temperatures may represent a physiological adaptation to the cool arctic summer. Finally, prolonged cold exposure positively affects reproduction and survival the following summer, suggesting adaptation of the species to the highly seasonal arctic environment. On the other hand, the ability of all life-cycle stages to overwinter, and a flexible life history with the species being able to take advantage of favourable climatic conditions to accelerate development and larviposition, seem to be ancestral features. Thus, the success of A. lineatus in arctic habitats is probably attributable to a combination of derived and ancestral life-history traits. Studies of conspecific temperate populations are required to elucidate further local adaptations of arctic populations.  相似文献   

11.
Abstract Florida populations of the eastern tiger swallowtail butterfly, Papilio glaucus L., have unique morphological features and ecological adaptations that have contributed to their subspecies status (P. g. maynardi Gauthier). We describe geographically unique abilities for detoxification of Carolina willow, Salix caroliniana Michx. (Salicaceae), for several Florida populations of P. g. maynardi. Of all the approximately 570 worldwide species of the Papilionidae, such Salicaceae detoxification abilities exist only in the allopatric North American western and northernmost species (P. rutulus Lucas, P. eurymedon Lucas and P. canadensis Rothschild & Jordan). Females of P. glaucus collected from populations in southeastern USA were examined for oviposition preference in 5‐choice assays, and displayed a low preference for Salicaceae (<5%), but larvae from Florida populations exhibited a high survival (>60%) on these plants. Detoxification abilities have previously shown to be autosomally inherited, and can be transferred via natural or hand‐paired interspecific hybrid introgression. However, these Florida populations are at least 700–1 500 km from the nearest hybrids or the hybrid species, P. appalachiensis Pavulaan & Wright, which possess these detoxification abilities. In any case, the Z ( = X)‐linked oviposition preferences for Salicaceae are lacking in these Florida populations, illustrating genetic independence of oviposition preference determination and larval survival/performance abilities. The origins of detoxification abilities are unlikely to be due to recent climate‐driven introgression, and may represent ancestral trait carry‐overs from interglacial refugium populations of the Pleistocene epoch.  相似文献   

12.
The adaptation to alternate host plants of introduced herbivorous insects can be vital to agriculture due to the emergence of crop pests. Historically, it is assumed that there are trade-offs associated with the adaptation to new host plants; a generalist genotype that adapts to an alternate host is expected to have a relatively lower fitness on the ancestral host than a specialist genotype (physiological cost) or a relatively lower host-searching ability for the ancestral host plant (behavioral cost). In this study, we tested the costs of adaptation to a new host plant in the introduced herbivorous insect, Ophraella communa LeSage (Coleoptera: Chrysomelidae). In its native range (United States), O. communa feeds mostly on Ambrosia artemisiifolia L. (Asterales: Asteraceae) and cannot utilize the related species, Ambrosia trifida L. (Asterales: Asteraceae), as a host plant. On the other hand, the introduced O. communa population in Japan utilizes A. trifida extensively, and is adapting to it, both physiologically and behaviorally. We compared larval performance on the ancestral and alternate plants and adult host-searching ability between the native and introduced beetle populations. The introduced O. communa showed higher larval survival and adult feeding preference for the alternate host plant A. trifida than did the native O. communa, indicating that the introduced O. communa has rapidly adapted to the alternate host plant. However, there are no differences in either larval performance on the ancestral host A. artemisiifolia or host-searching accuracy between the native and introduced O. communa.  相似文献   

13.
For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus’ diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.  相似文献   

14.
The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.  相似文献   

15.
The evolution of host range for insect herbivores involves many behavioral, physiological, and biochemical adaptations that often lead to locally specialized populations or species. Such specialization may be constrained by ecological factors (e.g., local host availability) or by evolutionary factors (e.g., phylogenetic divergence in behavioral, physiological, or biochemical detoxification enzymes; and potential inabilities to return to ancestral hosts). While insect adaptations to new hosts can be rapid, ancient detoxification systems may persist in some lineages of swallowtail butterflies (Papilionidae) for millions of years. Here, we test various species of specialized species/populations of Papilionidae (Lepidoptera) from North America and from Australia on an array of Australian host plant families in order to determine whether the current feeding constraints reflect loss of capabilities to recognize and use hosts other than their current (local) favorites. We selected two species of Lauraceae specialists (Papilio troilus L. and Papilio palamedes Drury) from North America and one locally specialized population of Papilio glaucus L. that only uses one plant species in the Magnoliaceae in Florida. We also examined three species/populations of Australian swallowtails for comparison, including the Monimiaceae‐specialized Graphium macleayanum moggana L. E. Couchman, the Rutaceae‐specialized Papilio aegeus Donovan, and the Annonaceae‐specialized Graphium eurypylus L. Our aim was to determine whether neonate larvae of these six specialists could survive on any plants other than their currently favored species. While the Lauraceae specialists could use nothing else and were thus evolutionarily constrained, the Magnoliaceae‐, Rutaceae‐, and Monimiaceae specialists all had common abilities to accept, feed, and grow on plants in the Lauraceae, Monimiaceae, Magnoliaceae, and Rutaceae families. Even the Annonaceae specialist was discovered using Magnoliaceae in the field, suggesting existence here also of both flexiblity in preferences and detoxification abilities and ‘ecological monophagy’.  相似文献   

16.
We studied host-plant preference and performance of the leaf beetle, Melasoma lapponica, around Severonikel smelter situated in Monchegorsk, Russia. The breadth of feeding niche (Smith's measure) based on both field counts and preference tests decreased with an increase of ambient SO2 concentration, but showed no relationship with either metal pollutants or beetle population densities. In heavily polluted plots (mean annual SO2 concentrations 400–1000 g/m3) the beetles concentrated on Salix borealis, Whereas in moderately and slightly polluted plots they used other willow species as well. No difference in survival was revealed between M. lapponica fed with leaves of S. borealis from heavily and sloghtly polluted plots. However, performance of larvae fed with Salix caprea and S. Phylicifolia was significantly lower when leaves were collected from heavily polluted plots. In these plots beetles clearly preferred S. borealis, the only species assuring high survival of M. lapponica under strong pollution impact. Decrease in preference of two less favourable hosts, S. caprea and S. phylicifolia, with increase in pollution can therefore be considered as an adaptive response of M. lapponica to pollution-induced changes in host-plant quality.  相似文献   

17.
It has been proposed that in non-rewarding animal-pollinated plants the pollination intensity should decrease with increasing population size and should increase with increasing local abundance of reward-producing plants. To test these hypotheses, we examined how population size, local abundance of Salix caprea, and tree cover were related to pollen removal and fruit production in 16 populations of the deceptive, early-flowering and bumblebee-pollinated orchid Calypso bulbosa in northern Sweden in 3 consecutive years. To determine whether fruit production was limited by pollinator visitation, supplemental hand-pollinations were performed in three populations in 3 years. Finally, to examine whether increased fruit production was associated with a reduction in future flower production, vegetative growth or survival, supplemental hand-pollination was repeated for 5 years in one population. The levels of pollen export, pollen deposition, and fruit set of C. bulbosa varied considerably among years and among populations. The proportion of plants exporting pollen was negatively related to population size, and positively related to density of S. caprea and to tree cover in 1 of the 3 years. In the other 2 years, no significant relationship was detected between proportion of plants exporting pollen and the latter three variables. In no year was there a significant relationship between fruit set and population size, density of S. caprea and tree cover. There was substantial among-year variation in the extent to which fruit production was limited by insufficient pollen deposition and in the amount of weather-induced damage to flowers and developing fruits. Fruit set was consistently higher in hand-pollinated than in open-pollinated plants, but this difference was statistically significant in only one of 3 years. Supplemental hand-pollination in 5 consecutive years increased cumulative fruit production 1.8 times, but did not affect flower production, plant size, or survival. Tree cover was negatively correlated with the incidence of frost damage in 1 year. The results indicate that life-time seed production may be pollen limited in C. bulbosa, and that variation in population size and local abundance of the early-flowering, nectar-producing S. caprea can only partly explain the extensive variation in pollinator visitation among populations of this species.  相似文献   

18.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

19.
Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from <1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30–50%) and Spanish (40–66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (<1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds.  相似文献   

20.
Herbivores that have recently expanded their host plant ranges provide opportunities to test hypotheses about the evolution of host plant specialization. Here, we take advantage of the contemporary global range expansion of the monarch butterfly (Danaus plexippus) and conduct a reciprocal rearing experiment involving monarch populations with divergent host plant assemblages. Specifically, we ask the following questions: (1) Do geographically disparate populations of monarch butterflies show evidence for local adaptation to their host plants? If so, what processes contribute to this pattern? (2) How is dietary breadth related to performance across multiple host species in monarch populations? (3) Does the coefficient of variation in performance vary across sympatric versus allopatric hosts? We find evidence for local adaptation in larval growth rate and survival based on sympatric/allopatric contrasts. Migratory North American monarchs, which have comparatively broad host breadth, have higher mean performance than derived nonmigratory populations across all host plant species. Monarchs reared on their sympatric host plants show lower coefficient of variation in performance than monarchs reared on allopatric hosts. We focus our discussion on possible mechanisms contributing to local adaptation to novel host plants and potential explanations for the reduction in performance that we observed in derived monarch populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号