首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.  相似文献   

2.
3.
4.
Dr. D. Metodiewa 《Amino acids》1998,14(1-3):181-187
Summary There is now strong experimental evidence that the basic precursors for the synthesis of catechol(amine) and indolamine neurotransmitters, tyrosine and tryptophan can act as generators of ROS (reactive oxygen species): peroxides, superoxide and peroxyradicals. The consequences of free radicals formation from precursors during oxidative degradation process, their possible participation in electron transfer/addition reactions and chain processes involving cell antioxidant defense system were presented and discussed. Although the generation of neurotoxic ROS by tyrosine and tryptophan is accepted to occur in the presented model systems, doubts can exist as to the situationin vivo, which may be completely different and remain to be explored. The relevance of the present findings with regard to a variety of neurological diseases cannot be ignored.  相似文献   

5.
New, improved media and procedures for making rat chimeric embryos and culturing them in vitro have been developed. We have produced 27 rat chimeras: 20 males and 7 females. This ratio of males to females is consistent with that seen in mouse chimeras, suggesting that rat sex chimeras develop as phenotypic males. By aggregating embryos containing appropriate genetic markers for pigment cell differentiation, it is possible to produce chimeras that elucidate the site of action of the hooded gene. The coat color patterns of black ? black hooded chimeras display a white belly spot. In black ? albino hooded chimeras, small patches of white hair appear on the head and a large white spot occurs on the belly. Black ? agouti hooded chimeras display both agouti and nonagouti pigmentation over the entire surface of the chimera. These animals are fully pigmented with no white spots. In black ? albino non-hooded chimeras, rather small irregular patches of black and white hairs are distributed throughout the pelage. Histological examination of sections of hair follicles obtained from the white areas in the head of black ? albino hooded chimeras revealed amelanotic melanocytes. On the other hand, hair bulbs from the white belly spots do not contain any such melanocytes. Thus the white hairs of the head are due to the presence of albino melanocytes, but the white hairs of the belly are due to the total absence of melanocytes. All these observations are consistent with the conclusion that the hooded gene acts within melanoblasts, probably to retard their migration from the neural crest and/or to prevent their entrance into the hair follicles of the white areas of hooded rats.  相似文献   

6.
Geisler M  Nadeau J  Sack FD 《The Plant cell》2000,12(11):2075-2086
Wild-type stomata are spaced by intervening cells, a pattern disrupted in the Arabidopsis mutant too many mouths (tmm). To determine the mechanism of wild-type spacing and how tmm results in pattern violations, we analyzed the behavior of cells through time by using sequential dental resin impressions. Meristemoids are stomatal precursors produced by asymmetric division. We show that wild-type patterning largely results when divisions next to a preexisting stoma or precursor are oriented so that the new meristemoid is placed away. Because this placement is independent of cell lineage, these divisions may be oriented by cell-cell signaling. tmm randomizes this orientation and releases a prohibition on asymmetric division in cells at specific locations, resulting in stomatal clusters. TMM is thus necessary for two position-dependent events in leaves: the orientation of asymmetric divisions that pattern stomata, and the control of which cells will enter the stomatal pathway. In addition, our findings argue against most previous hypotheses of wild-type stomatal patterning.  相似文献   

7.
We established chronic graft vs host disease in (BALB/c x A/J) F1 mice with the injection of lymphoid cells from the parental A/J strain. These animals developed glomerulonephritis, forefoot edema, alopecia, splenomegaly, and lymphadenopathy to various degrees, and all developed antinuclear antibodies. To determine whether these antibodies were directed against the small nuclear ribonucleoprotein (snRNP) particles that are characteristic targets for autoimmune responses in human rheumatic diseases, sera were studied in the 32P immunoprecipitation and immunoblotting assays. Among 20 mice, antibodies to snRNP developed in 10. These antibodies usually reached maximal levels about 4 wk after induction of graft vs host disease and generally fell thereafter. However, two mice developed antibodies to snRNP between the 10th and 20th wk of follow-up. Sera from six mice strongly recognized the U1 snRNP and an additional serum strongly bound both the U1 and U3 particles. Several sera contained lower levels of antibodies specific for the U3 and possibly pre-U2 snRNP particles. In immunoblots, sera that immunoprecipitated the U1 snRNP bound epitopes located on its 70,000 Da, A, B'/B, and/or C polypeptides. Sera that immunoprecipitated the U3 snRNP recognized a 34,000-Da polypeptide. These polypeptides are known to bear the autoantigenic epitopes that are recognized by human sera containing anti-U1 RNP and anti-U3 RNP autoantibodies. We conclude that chronic graft vs host disease in mice provides a model for the study of the autoimmune responses that characterize human diseases such as mixed connective tissue disease, scleroderma, and SLE.  相似文献   

8.
Many studies have investigated different mechanisms of attack and defense in different species of higher brain animals including cats, rats, rodents, mice, and even in some bird species. However, detailed comparative analysis has not been carried out to understand the major similarities in the mechanisms of attack and defense across the different species of vertebrates. Although there are differences, there are also significant similarities as well, which warrant comparative assessment. By considering ethological ideas associated with the motivational defense system, we investigated the motor patterns of attack and defense in cats and rats, using the “resident-intruder” experimental paradigm. Our results reveal specific similarities and differences in the motor patterns of attack and defense in rats and cats. We discuss comparatively the mechanisms of attack and defense across different species of vertebrates, focusing on motor patterns, neuromodulating factors, brains neural substrates, and circuitry.  相似文献   

9.
The endogenous properties of recombinase proteins allow them to associate with and bind DNA to catalyze homologous recombination. These endogenous properties of cellular recombination enzymes may be useful to the field of transgenesis. The production of transgenic animals, in particular livestock, is an inefficient process by both conventional pronuclear microinjection techniques and nuclear transfer. Furthermore, the use of pronuclear microinjection is currently limited to the random addition of genes and does not allow for the replacement of an endogenous gene with a more desired one. The functions of cellular recombination enzymes have been exploited to develop a technique that is compatible with pronuclear microinjection and may make the process of generating transgenic livestock more efficient while also enabling the targeting of homologous chromosomal genes. In our hands, transgenic animals generated by the pronuclear microinjection of various recombinase protein-coated DNA fragments led to a higher than expected birth rate as well as transgene integration frequency. Most founder animals generated were likely mosaic, indicating that integration occurred after cell division. The presence of multiple related genes makes detection of any recombination event difficult. Overall, this technique is a straightforward, rapid, and efficient procedure that can be applied to any segment of DNA and any microinjection apparatus, and is less labor intensive than nuclear transfer.  相似文献   

10.
How repeating striped patterns arise across cellular fields is unclear. To address this we examined the repeating pattern of Stripe (Sr) expression across the parasegment (PS) in Drosophila. This pattern is generated in two steps. First, the ligands Hedgehog (Hh) and Wingless (Wg) subdivide the PS into smaller territories. Second, the ligands Hh, Spitz (Spi), and Wg each emanate from a specific territory and induce Sr expression in an adjacent territory. We also show that the width of Sr expression is determined by signaling strength. Finally, an enhancer trap in the sr gene detects the response to Spi and Wg, but not to Hh, implying the existence of separable control elements in the sr gene. Thus, a distinct inductive event is used to initiate each element of the repeating striped pattern.  相似文献   

11.
We present a biologically plausible two-variable reaction-diffusion model for the developing vertebrate limb, for which we postulate the existence of a stationary solution. A consequence of this assumption is that the stationary state depends on only a single concentration-variable. Under these circumstances, features of potential biological significance, such as the dependence of the steady-state concentration profile of this variable on parameters such as tissue size and shape, can be studied without detailed information about the rate functions. As the existence and stability of stationary solutions, which must be assumed for any biochemical system governing morphogenesis, cannot be investigated without such information, an analysis is made of the minimal requirements for stable, stationary non-uniform solutions in a general class of reaction-diffusion systems. We discuss the strategy of studying stationary-state properties of systems that are incompletely specified. Where abrupt transitions between successive compartment-sizes occur, as in the developing limb, we argue that it is reasonable to model pattern reorganization as a sequence of independent stationary states.  相似文献   

12.
Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 microm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.  相似文献   

13.
Endoplasmic reticulum aminopeptidases, ERAP1 and ERAP2, as well as Insulin regulated aminopeptidase (IRAP) play key roles in antigen processing, and have recently emerged as biologically important targets for manipulation of antigen presentation. Taking advantage of the available structural and substrate-selectivity data for these enzymes, we have rationally designed a new series of inhibitors that display low micromolar activity. The selectivity profile for these three highly homologous aminopeptidases provides a promising avenue for modulating intracellular antigen processing.  相似文献   

14.
Many intron positions are conserved in varying subsets of eukaryotic genomes and, consequently, comprise a potentially informative class of phylogenetic characters. Roy and Gilbert developed a method of phylogenetic reconstruction using the patterns of intron presence-absence in eukaryotic genes and, applying this method to the analysis of animal phylogeny, obtained support for an Ecdysozoa clade (Roy SW, Gilbert W. 2005. Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci USA. 102:4403-4408). The critical assumption in the method was the independence of intron loss in different branches of the phylogenetic tree. Here, this assumption is refuted by showing that the branch-specific intron loss rates are strongly correlated. We show that different tree topologies are obtained, in each case with a significant statistical support, when different subsets of intron positions are analyzed. The analysis of the conserved intron positions supports the Coelomata topology, that is, a clade comprised of arthropods and chordates, whereas the analysis of more variable intron positions favors the Ecdysozoa topology, that is, a clade of arthropods and nematodes. We show, however, that the support for Ecdysozoa is fully explained by parallel loss of introns in nematodes and arthropods, a factor that does not contribute to the analysis of the conserved introns. The developed procedure for the identification and analysis of conserved introns and other characters with minimal or no homoplasy is expected to be useful for resolving many hard phylogenetic problems.  相似文献   

15.
A review of experimental data documenting that domestication of animals is associated with hereditary reorganization of neuro-endocrine mechanisms, responsible for basic processes of ontogeny, is presented. The data demonstrated changes in gonadal and pituitary-adrenal systems in domesticated animals. Analysis of evidence that selection for low aggressiveness towards man is, in fact, the selection for definite activity of brain neurotransmitters regulating aggressive behaviour and emotional stress response has been carried out. Supposed role of modifications in the mechanisms of domestication is discussed.  相似文献   

16.
In the present work a theoretical analysis of the molecular mechanisms on duplications emergence in the genomes of prokaryotes on the basis of direct repeats has been carried out. The correlations obtained have shown, that the duplication rate depends on such parameters as the distance between repeated regions, repeats nucleotide composition and the number of homology damages in them. It has been revealed that the rate of duplications decreases more readily than the deletion rate upon the growth of the distance between the repeats. Such prevalence of deletions over duplications must lead to the elimination of various types of direct repeats from the prokaryotic genomes in the course of their evolution.  相似文献   

17.
18.
ERAP1 (endoplasmic reticulum aminopeptidase 1), ERAP2 and IRAP (insulin-regulated aminopeptidase) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding on to MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet been investigated in detail. In the present study we utilized a collection of 82 fluorigenic substrates to define a detailed selectivity profile for each of the three enzymes and to probe structural and functional features of the S1 (primary specificity) pocket. Molecular modelling of the three S1 pockets reveals substrate-enzyme interactions that are critical determinants for specificity. The substrate selectivity profiles suggest that IRAP largely combines the S1 specificity of ERAP1 and ERAP2, consistent with its proposed biological function. IRAP, however, does not achieve this dual specificity by simply combining structural features of ERAP1 and ERAP2, but rather by an unique amino acid change at position 541. The results of the present study provide insights on antigenic peptide selection and may prove valuable in designing selective inhibitors or activity markers for this class of enzymes.  相似文献   

19.
Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviors. Given the complexity of the nervous system in higher vertebrates this is a daunting task. Nevertheless, recent advances in developmental genetics hold out hope that studies of locomotor and respiratory circuits will provide general insight for understanding how ensembles of neurons are wired to control specific behaviors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号