首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nervous system consists of neurons and glial cells. Neurons generate and propagate electrical and chemical signals, whereas glia function mainly to modulate neuron function and signaling. Just as there are many different kinds of neurons with different roles, there are also many types of glia that perform diverse functions. For example, glia make myelin; modulate synapse formation, function, and elimination; regulate blood flow and metabolism; and maintain ionic and water homeostasis to name only a few. Although proteomic approaches have been used extensively to understand neurons, the same cannot be said for glia. Importantly, like neurons, glial cells have unique protein compositions that reflect their diverse functions, and these compositions can change depending on activity or disease. Here, I discuss the major classes and functions of glial cells in the central and peripheral nervous systems. I describe proteomic approaches that have been used to investigate glial cell function and composition and the experimental limitations faced by investigators working with glia.The nervous system is composed of neurons and glial cells that function together to create complex behaviors. Traditionally, glia have been considered to be merely passive contributors to brain function, resulting in a pronounced neurocentric bias among neuroscientists. Some of this bias reflects a paucity of knowledge and tools available to study glia. However, this view is rapidly changing as new tools, model systems (culture and genetic), and technologies have permitted investigators to show that glia actively sculpt and modulate neuronal properties and functions in many ways. Glia have been thought to outnumber neurons by 10:1, although more recent studies suggest the ratio in the human brain is closer to 1:1 with region-specific differences (1). There are many different types of glia, some of which are specific to the central nervous system (CNS),1 whereas others are found only in the peripheral nervous system (PNS). The main types of CNS glia include astrocytes, oligodendrocytes, ependymal cells, radial glia, and microglia. In the PNS, the main glial cells are Schwann cells, satellite cells, and enteric glia. These cells differ and are classified according to their morphologies, distinct anatomical locations in the nervous system, functions, developmental origins, and unique molecular compositions. Among the different classes of glia there are additional subclasses that reflect further degrees of specialization. In this review, I will discuss the characteristics and functions of the major glial cell types including astrocytes, microglia, and the myelin-forming oligodendrocytes (CNS) and Schwann cells (PNS). Because of space limitations, it is impossible to give a complete accounting of all glia and what is known about each of these cell types. Therefore, I encourage the interested reader to refer to some of the many excellent reviews referenced below that focus on individual glial cell types. Finally, I will discuss proteomic studies of glial cell function and some of the unique challenges investigators face when working with these cells.  相似文献   

2.

Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.

  相似文献   

3.
Zachary I 《Neuro-Signals》2005,14(5):207-221
Vascular endothelial growth factor (VEGF or VEGF-A) and its receptors play essential roles in the formation of blood vessels during embryogenesis and in disease. Most biological effects of VEGF are mediated via two receptor tyrosine kinases, VEGFR1 and VEGFR2, but specific VEGF isoforms also bind neuropilins (NP) 1 and 2, non-tyrosine kinase receptors originally identified as receptors for semaphorins, polypeptides with essential roles in neuronal patterning. There is abundant evidence that VEGF-A has neurotrophic and neuroprotective effects on neuronal and glial cells in culture and in vivo, and can stimulate the proliferation and survival of neural stem cells. VEGFR2 and NP1 are the major VEGF receptors expressed on neuronal cells and, while the mechanisms mediating neuroprotective effects of VEGF are not fully understood, VEGF stimulates several signalling events in neuronal cell types, including activation of phospholipase C-gamma, Akt and ERK. Findings in diverse models of nerve damage and disease suggest that VEGF has therapeutic potential as a neuroprotective factor. VEGF is a key mediator of the angiogenic response to cerebral and peripheral ischaemia, and promotes nerve repair following traumatic spinal injury. Recent work has revealed a role for reduced VEGF expression in the pathogenesis of amyotrophic lateral sclerosis, a rare neurodegenerative disease caused by selective loss of motor neurons. In many instances, the neuroprotective effects of VEGF appear to result from a combination of the indirect consequences of increased angiogenesis, and the direct stimulation of neuronal function. However, more work is required to determine the specific functional role of direct neuronal effects of VEGF.  相似文献   

4.
Nomura J  Hosoi T  Okuma Y  Nomura Y 《Life sciences》2003,72(18-19):2117-2120
  相似文献   

5.
The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) cause the severe neurodevelopmental Lesch Nyhan Disease (LND) are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA) and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS) cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA) multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer''s and Huntington''s disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.  相似文献   

6.
Glial cells are the most abundant cells in the human brain and have long been considered as passive supporting cells for neurons. In contrast to the extensive studies on various neuronal functions in the nervous system, we still have limited knowledge about glial cells. Recently a number of pioneering studies have provided convincing evidence that glia play active roles in development and function of the central nervous system. This review discusses recent advances in our understanding of the molecular mechanisms underlying glial cell differentiation. We then highlight some of the novel findings about glial function, i.e. the role of glia in synaptogenesis and the intricate relationship between astrocytes and adult neural stem cells. Finally, we summarize the emerging studies that implicate abnormalities in the formation or maintenance of glia leading to severe brain diseases, such as Alexander disease, glioblastoma and multiple sclerosis, and potential therapeutic strategies to tackle these diseases.  相似文献   

7.
Over the last decade, a series of studies has demonstrated that glia in the central nervous system play roles in many aspects of neuronal functioning including pain processing. Peripheral tissue damage or inflammation initiates signals that alter the function of the glial cells (microglia and astrocytes in particular), which in turn release factors that regulate nociceptive neuronal excitability. Like immune cells, these glial cells not only react at sites of central and/or peripheral nervous system damage but also exert their action at remote sites from the focus of injury or disease. As well as extensive evidence of microglial involvement in various pain states, there is also documentation that astrocytes are involved, sometimes seemingly playing a more dominant role than microglia. The interactions between astrocytes, microglia and neurons are now recognized as fundamental mechanisms underlying acute and chronic pain states. This review focuses on recent advances in understanding of the role of astrocytes in pain states.  相似文献   

8.
Glial cells are non-neuronal components of the central nervous system (CNS). They are endowed with diverse functions and are provided with tools to detect their own activities and those of neighboring neurons. Glia and neurons are in continuous reciprocal communication under both physiological and neuropathological conditions, and glia secrete various guidance factors or proteinaceous signals that service vital neuronal–glial interactions in health and disease. Analysis and profiling of glial secretome, especially of microglia and astrocytes, have raised new expectations for the diagnosis and treatment of CNS disorders, and the availability of a catalog of glia-secreted proteins might provide an origin for further research on the complex extracellular signaling mediated by glial cells. Components of the glial secretome play important roles as mediators and modulators of brain structure and function during neuroprotection and neurodegeneration. Therapeutic hypothermia has been acclaimed an effective modulator of brain injury via its substantial effect on the protein expression profiles of glia. Furthermore, emerging proteomic tools and methodologies make feasible the documentation of the reactive glial secretome signature. This review focuses on reactive glial cells and the uniqueness of their secretome during diverse neuropathological conditions. This article is part of a Special Issue entitled: An Updated Secretome.  相似文献   

9.
Glial cells are major components of the nervous system. The roles of these cells are not fully understood, however. We have now identified a secreted protein, designated Meteorin, that is expressed in undifferentiated neural progenitors and in the astrocyte lineage, including radial glia. Meteorin selectively promoted astrocyte formation from mouse cerebrocortical neurospheres in differentiation culture, whereas it induced cerebellar astrocytes to become radial glia. Meteorin also induced axonal extension in small and intermediate neurons of sensory ganglia by activating nearby satellite glia. These observations suggest that Meteorin plays important roles in both glial cell differentiation and axonal network formation during neurogenesis.  相似文献   

10.
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types – astrocytes, microglia, and oligodendrocytes – across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.  相似文献   

11.
Glial cells play an important role in normal brain function and emerging evidence would suggest that their dysfunction may be responsible for some epileptic disease states. Neuroimaging of glial cells is desirable, but there are no clear methods to assess neither their function nor localization. Magnetic resonance imaging (MRI) is now part of a standardized epilepsy imaging protocol to assess patients. Structural volumetric and T2-weighted imaging changes can assist in making a positive diagnosis in a majority of patients. The alterations reported in structural and T2 imaging is predominately thought to reflect early neuronal loss followed by glial hypertrophy. MR spectroscopy for myo-inositol is a being pursued to identify glial alterations along with neuronal markers. Diffusion weighted imaging (DWI) is ideal for acute epileptiform events, but is not sensitive to either glial cells or neuronal long-term changes found in epilepsy. However, DWI variants such as diffusion tensor imaging or q-space imaging may shed additional light on aberrant glial function in the future. The sensitivity and specificity of PET radioligands, including those targeting glial cells (translocator protein) hold promise in being able to image glial cells. As the role of glial function/dysfunction in epilepsy becomes more apparent neuroimaging methods will evolve to assist the clinician and researcher in visualizing their location and function.  相似文献   

12.
李兆英 《昆虫学报》2012,55(3):309-315
神经胶质作为视觉系统的重要成分之一, 对视觉系统的发育及功能起着重要的作用。本研究通过组织解剖观察、 免疫组织化学等技术, 对中华蜜蜂Apis cerana cerana幼虫和蛹的视觉系统中神经胶质的类型和发育过程进行了比较研究。研究表明: 在中华蜜蜂视觉系统中, 根据神经胶质的位置和形态主要分为表面神经胶质、 皮层神经胶质和神经纤维网神经胶质3种类型; 神经胶质主要来源于视柄和视叶中的神经胶质前体中心; 神经胶质细胞数量的增加一方面来自于细胞的迁移, 另一方面来自于神经胶质细胞自身的分裂增殖。本研究为昆虫神经胶质的发育以及功能研究提供理论基础。  相似文献   

13.
A century and a half after first being described, glia are beginning to reveal their intricate and important roles in nervous system development and function. Recent studies in the nematode Caenorhabditis elegans suggest that this invertebrate will provide important insight into these roles. Studies of C. elegans have revealed a connection between glial ensheathment of neurons and tubulogenesis, have uncovered glial roles in neurite growth, navigation, and function, and have demonstrated roles for glia and glia-like cells in synapse formation and function. Given the conservation of basic anatomical, functional and molecular features of the nervous systems between C. elegans and vertebrates, these recent advances are likely to be informative in describing nervous system assembly and function in all organisms possessing a nervous system.  相似文献   

14.
A large body of evidence supports a role for the NO-cGMP-protein kinase G pathway in the regulation of synaptic transmission and plasticity, brain development and neuroprotection. Circumstancial evidence implicates natriuretic peptide-stimulated cGMP formation in the same CNS functions. In addition to neurons, both cGMP-mediated pathways are functional in glial cells and an increasing number of reports indicate that they may control important aspects of glial cell physiology relevant to neuronal function. In this article we briefly review the regulation of cGMP formation in glial cells and summarize recent evidence indicating that cGMP-mediated pathways can play important roles in astroglial and microglial function in normal and diseased brain. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

15.
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.  相似文献   

16.
17.
The contribution of the cells within the central nervous system (CNS) toward adaptive immune responses is emerging and incompletely understood. Recent findings indicate important functional interactions between T-cells and glial cells within the CNS that may contribute to disease and neuropathology through antigen presentation. Although glia are not classically considered antigen-presenting cell (APC) types, there is growing evidence indicating that glial antigen presentation plays an important role in several neurological diseases. This review discusses these findings which incriminate microglia, astrocytes, and oligodendrocyte lineage cells as CNS-resident APC types with implications for understanding disease.  相似文献   

18.
19.
Mitterauer BJ 《Bio Systems》2003,72(3):209-215
I start out with the hypothesis that the basic symptoms of schizophrenia are caused by a loss of self-boundaries. Phenomenologically, schizophrenic symptoms are based on the inability of the brain to delimit conceptual boundaries. At the cellular level in the brain, I have in previous work attributed a spatio-temporal boundary setting function to the glial cells such that glial cells determine the grouping of neurons into functional units. Mutations in genes that result in non-splicing of introns can produce aberrant versions of neurotransmitter receptors that lack protein domains encoded by entire exons and can also have protein sequence encoded by introns that have not been properly spliced out. I propose that such "chimeric" receptors are generated in glial cells and that they cannot interact properly with their cognate neurotransmitters. The glia will then lose their inhibitory function with respect to the information processing within neuronal networks. The loss of glial boundary-setting may result in a 'borderless' generalization of information processing such that the structuring of the brain in functional domains is almost completely lost. This loss of glial boundary setting could be an explanation of the loss of self-boundaries in schizophrenia.  相似文献   

20.
Astrocyte dysfunction in neurological disorders: a molecular perspective   总被引:2,自引:0,他引:2  
Recent work on glial cell physiology has revealed that glial cells, and astrocytes in particular, are much more actively involved in brain information processing than previously thought. This finding has stimulated the view that the active brain should no longer be regarded solely as a network of neuronal contacts, but instead as a circuit of integrated, interactive neurons and glial cells. Consequently, glial cells could also have as yet unexpected roles in the diseased brain. An improved understanding of astrocyte biology and heterogeneity and the involvement of these cells in pathogenesis offers the potential for developing novel strategies to treat neurological disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号