首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ariskina EV 《Mikrobiologiia》2003,72(3):293-300
Prokaryotic cells may contain one of two types of magnetic intracellular structures, either crystalline magnetosomes or noncrystalline magnetic inclusions. In a magnetic field, the locomotor behavior of cells containing magnetosomes is categorized as magnetotaxis, whereas noncrystalline magnetic inclusions cause a passive attraction of cells containing such inclusions to a magnet. The review considers the distribution, structure, and function of both types of magnetic particles in prokaryotic cells.  相似文献   

2.
Ariskina  E. V. 《Microbiology》2003,72(3):251-258
Prokaryotic cells may contain one of two types of magnetic intracellular structures, either crystalline magnetosomes or noncrystalline magnetic inclusions. In a magnetic field, the locomotor behavior of cells containing magnetosomes is categorized as magnetotaxis, whereas noncrystalline magnetic inclusions cause a passive attraction of cells containing such inclusions to a magnet. This review considers the distribution, structure, and function of both types of magnetic particles in prokaryotic cells.  相似文献   

3.
Using scanning electron microscopy techniques we measured the diameter of adhesive tubular appendages of Salmonella enterica serovar S. Typhimurium. The appendages interconnected bacteria in biofilms grown on gallstones or coverslips, or attached bacteria to host cells (human neutrophils). The tubular appendage diameter of bacteria of virulent flagellated C53 strain varied between 60 and 70 nm, thus considerably exceeding in size of flagella or pili. Nonflagellated bacteria of mutant SJW 880 strain in biofilms grown on gallstones or coverslips were also interconnected by 60-90-nm tubular appendages. Transmission electron microscopy studies of thin sections of S. Typhimurium biofilms grown on agar or coverslips revealed numerous fragments of membrane tubular and vesicular structures between bacteria of both flagellated and nonflagellated strains. The membrane structures had the same diameter as tubular appendages observed by scanning electron microscopy, indicating that tubular appendages might represent membrane tubules (tethers). Previously, we have shown that neutrophils can contact cells and bacteria over distance via membrane tubulovesicular extensions (TVE) (cytonemes). The present electron microscopy study revealed the similarities in size and behavior of bacterial tubular appendages and neutrophil TVE. Our data support the hypothesis that bacteria establish long-range adhesive interactions via membrane tubules.  相似文献   

4.
The vole and Fuller strains of Rochalimaea quintana were grown on monolayers of mouse L cells irradiated 7 days previously and examined by light microscopy and scanning and transmission electron microscopy. Most of the bacteria of both strains were shown to adhere to the L cells but remained in an extracellular location. Cell division was frequently seen among the extracellular bacteria. The few intracellular bacteria seemed to be within vacuoles and did not multiply. Attachment to the eucaryotic cell did not seem to involve pili or other bacterial surface structures. The dimensions of the bacteria were approximately 0.45 micron in width by 1.0 to 1.7 micron in length. The cell envelope consisted of the usual trilaminar cell wall and plasma membranes separated by a layer of low electron density, as found in other gram-negative bacteria. No significant differences between the vole and Fuller strains either in morphology or relationship to eucaryotic cells were encountered.  相似文献   

5.
Chlamydiae are obligate intracellular bacteria residing exclusively in host cell vesicles termed inclusions. We have investigated the effects of deferoxamine mesylate (DAM)-induced iron deficiency on the growth of Chlamydia pneumoniae and Chlamydia trachomatis serovar L2. In epithelial cells subjected to iron starvation and infected with either C. pneumoniae or C. trachomatis L2, small inclusions were formed, and the infectivity of chlamydial progeny was impaired. Moreover, for C. trachomatis L2, we observed a delay in homotypic fusion of inclusions. The inhibitory effects of DAM were reversed by adding exogenous iron-saturated transferrin, which restored the production of infectious chlamydiae. Electron microscopy examination of iron-deprived specimens revealed that the small inclusions contained reduced numbers of C. pneumoniae that were mostly reticulate bodies. We have previously reported specific accumulation of transferrin receptors (TfRs) around C. pneumoniae inclusions within cells grown under normal conditions. Using confocal and electron microscopy, we show here a remarkable increase in the amount of TfRs surrounding the inclusions in iron-starved cultures. It has been shown that iron is an essential factor in the growth and survival of C. trachomatis. Here, we postulate that, for C. pneumoniae also, iron is an indispensable element and that Chlamydia may use iron transport pathways of the host by attracting TfR to the phagosome.  相似文献   

6.
Mammalian orthoreoviruses are believed to replicate in distinctive, cytoplasmic inclusion bodies, commonly called viral factories or viroplasms. The viral nonstructural protein muNS has been implicated in forming the matrix of these structures, as well as in recruiting other components to them for putative roles in genome replication and particle assembly. In this study, we sought to identify the regions of muNS that are involved in forming factory-like inclusions in transfected cells in the absence of infection or other viral proteins. Sequences in the carboxyl-terminal one-third of the 721-residue muNS protein were linked to this activity. Deletion of as few as eight residues from the carboxyl terminus of muNS resulted in loss of inclusion formation, suggesting that some portion of these residues is required for the phenotype. A region spanning residues 471 to 721 of muNS was the smallest one shown to be sufficient for forming factory-like inclusions. The region from positions 471 to 721 (471-721 region) includes both of two previously predicted coiled-coil segments in muNS, suggesting that one or both of these segments may also be required for inclusion formation. Deletion of the more amino-terminal one of the two predicted coiled-coil segments from the 471-721 region resulted in loss of the phenotype, although replacement of this segment with Aequorea victoria green fluorescent protein, which is known to weakly dimerize, largely restored inclusion formation. Sequences between the two predicted coiled-coil segments were also required for forming factory-like inclusions, and mutation of either one His residue (His570) or one Cys residue (Cys572) within these sequences disrupted the phenotype. The His and Cys residues are part of a small consensus motif that is conserved across muNS homologs from avian orthoreoviruses and aquareoviruses, suggesting this motif may have a common function in these related viruses. The inclusion-forming 471-721 region of muNS was shown to provide a useful platform for the presentation of peptides for studies of protein-protein association through colocalization to factory-like inclusions in transfected cells.  相似文献   

7.
Summary A variety of inclusion bodies occur in the mitochondria of several cell types of the snake, Elaphae quadrivirgata. These lie in the mitochondrial matrix or within the space of the cristae. The inclusions in the matrix are as follows: dense homogeneous and fine granular materials, structures with finger-print appearance and with filamentous and/or crystalloid pattern and fine ring-shaped and/or microtubular structures. The inclusions within mitochondrial cristae are glycogen particles, globular materials, and strand-like structures.These inclusions occur not only during the hibernation period of the snake, but also in the arousal period. Furthermore, some inclusions are encountered in fetal tissues. The functional significance of these inclusions is unknown; however, the present study suggests that they are related to the metabolic activity of the cells.  相似文献   

8.
Fluorescently labelled lectins were used in combination with epifluorescence microscopy and confocal laser scanning microscopy to allow the visualization and characterization of carbohydrate-containing extracellular polymeric substances (EPS) in biofilms of Pseudomonas aeruginosa. A mucoid strain characterized by an overproduction of the exopolysaccharide alginate, and an isogenic, non-mucoid strain were used. Model biofilms grown on polycarbonate filters were treated with lectins concanavalin A (ConA) and wheat germ agglutinin (WGA) that were fluorescently labelled with fluorescein isothiocyanate or tetramethyl rhodamine isothiocyanate. Fluorescently labelled ConA yielded cloud-like regions that were heterogeneously distributed within mucoid biofilms, whereas these structures were only rarely present in biofilms of the non-mucoid strain. The bacteria visualized with the fluorochrome SYTO 9 were localized both within and between the ConA-stained regions. In WGA-treated biofilms, the lectin was predominantly associated with bacterial cells. Alginate seemed to be involved in the interaction of ConA with the EPS matrix, since (i) pre-treatment of biofilms with an alginate lyase resulted in a loss of ConA biofilm staining, and (ii) using an enzyme-linked lectinsorbent assay (ELLA), ConA was shown to bind to purified alginate, but not to alginate that was degraded by alginate lyase. The application of fluorescently labelled lectins in combination with ELLA was found to be useful for the visualization and characterization of extracellular polysaccharide structures in P. aeruginosa biofilms.  相似文献   

9.
Summary Immunogold labelling and electron microscopy were used to investigate whether catalase was present in peroxisomal inclusions, the composition of which has not yet been determined in plant cells. In the mesophyll cells of sunflower (Helianthus annuus L.) cotyledons, the catalase gold label was confined to peroxisomes. At day 2 of postgerminative growth in darkness, peroxisomes were free of inclusions, and the matrix was homogeneously labelled with gold particles. Thereafter, amorphous inclusions appeared, but by day 5 of growth, conspicuous crystalline inclusions (cores) were the predominant type. This developmental change, first observed in cotyledons grown in continuous light between day 2.5 and 5, also took place in cotyledons kept in permanent darkness. Both amorphous and crystalline inclusions showed a much higher immunogold label than did the peroxisomal matrix, indicating that catalase was a component of both types of peroxisomal inclusions. In contrast to catalase, the immunogold label of glycolate oxidase was almost completely absent from cores and was confined to the peroxisomal matrix. Together with reports on the absence of other enzymes from peroxisomal inclusions in sunflower and other species (Vaughn, 1989) our results suggest that catalase is a major constituent of amorphous and crystalline peroxisomal inclusions in plants.  相似文献   

10.
Breast epithelial cells develop into polarized and highly organized acinar and ductal structures in response to stromal cues, including extracellular matrix composition and density, which can in part be reproduced in 3D culture conditions. Here, we present the effects of various 3D in vitro stroma compositions (termed “matrices” or “substrates”) on the ability of heterotypic cultures of epithelial and mesenchymal stem cells to organize into acinar and tubular structures. Normal murine mammary gland (NMuMG) cells were cultured, either alone or in combination (30:70) with mouse mesenchymal stem cells (D1), in 3D matrices generated by agarose, collagen, and Matrigel® alone or by a combination thereof. After 3–5 d in culture, cell distribution, organization, and the presence of acinus-like and tubule-like structures were determined. The number of acinar structures was significantly higher in cultures grown in combination matrices of agarose with Matrigel® or collagen I when compared with cultures grown in Matrigel® or collagen I alone (p?p?相似文献   

11.
The ultrastructural aheration of two host plants infected with tomato mosaic virus (ToMV) were studies with transmission electron microscopy. A large number of virus particles were found being accumulated in different cells such as epidermis, parenchyma cells and vascular bundle cells of Lycopersicon esculentum Mill. grown at 25℃ Crystalline inclusions and paracrystal inclusions composed of ToMV particles were observed in the cytoplasm or vacuoles. Some muhivesicular bodies and myeloid bodies protming into the vacuole and vires-specific vesicles associated with the tonoplast were also observed. The ultrastructuml alteration of Nicotiana tabacum L. tv. Xanthinn was similar to that in tomato infected by ToMV grown at 25 cE. In addition to the aggregate inclusions described above, some cytoplasmic angularly-layered aggregates and abnormal chloroplasts with small peripheral vesicles were observed in the parenchyma cells. The densely stained amorphous material was seen in the cytoplasm of N. tabacum L. cv. Xanthiun grown at 35℃. No X- body was observed in the cytoplasm of the ToMV infected tomato and tobacco grown at 25℃ or 35℃. The authors' results suggest a significant difference between the cytopathological effects of ToMV and tobacco mosaic virus (TMV). These characteristic difference may be useful in the virus diagnosis and identification virus infections in plants.  相似文献   

12.
The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.  相似文献   

13.
The intracellular location of the major induced mammalian heat shock (or stress) protein (Mr = 72,000) has been determined by both biochemical and immunological methods. This protein, shown here to be comprised of at least three structurally related isoforms, is produced at high levels within 30 min to 1 h following heat treatment of cells. Biochemical fractionation of cells grown under heat shock showed that following its synthesis a portion of the 72,000-Da protein (and its isoforms) becomes associated with the nucleus while some remains in the cytoplasm. Indirect immunofluorescence studies using antiserum directed against the major isoforms of the 72,000-Da protein were carried out in normal and heat-shocked cells as well as in cells grown under stress by exposure to either an amino acid analogue or to sodium arsenite. Diffuse cytoplasmic and nuclear staining was observed in cells grown at 37 degrees C. In cells grown under heat shock conditions, both the cytoplasmic staining and the nuclear staining were found to increase with the nuclear staining consisting of both granular and patch-like structures, the latter being coincident with phase-dense nucleoli. In the case of cells exposed to amino acid analogues or to sodium arsenite, only cytoplasmic and to a lesser extent nuclear staining was observed, i.e. no localized nucleolar fluorescence was observed. Following return of heat shock-treated cells to normal growth temperatures, both the synthesis of the 72,000-Dalton stress protein and its nucleolar staining were found to diminish.  相似文献   

14.
The fluorescent-antibody technique was used to identify cells and spores of Bacillus subtilis and cells of B. circulans from soil. From cells grown in three broth media of different nutrient status, i.e., a cold extracted soil medium (CSE), an unamended autoclaved soil extract (HSE), and nutrient broth (NB), antisera were produced with both quantitative and qualitative differences in antibody content. The specificities of antisera to two strains of each of the Bacillus species were determined. Antisera for B. subtilis O antigens were species-specific and showed no cross-reactions, whereas those for the B. circulans O antigens were strain-specific and in some cases showed cross-reactions with B. alvei. This cross-reaction was removed by absorption of the antiserum with B. alvei O antigen. Fluorescein isothiocyanate gamma-globulin conjugates prepared from these antisera showed the same specificity reactions. A method for staining bacteria on soil particles was developed, by use of small staining troughs. By mounting stained soil particles on slides and irradiating them with transmitted and incident ultraviolet blue light, bacteria on both mineral and organic particles, taken directly from soil, could be observed. Fluorescent antibodies against cells grown in CSE gave brighter fluorescence of stained bacteria on soil particles than did fluorescent antibodies against cells grown in either HSE or NB. Colonies of both Bacillus species were generally small and localized. Spore antisera, though not rigorously tested for specificity, were used to identify spores of B. subtilis on soil particles. The uses and implications of the technique in soil bacteriology are discussed.  相似文献   

15.
Membrane vesicles: an overlooked component of the matrices of biofilms   总被引:18,自引:5,他引:13       下载免费PDF全文
The matrix helps define the architecture and infrastructure of biofilms and also contributes to their resilient nature. Although many studies continue to define the properties of both gram-positive and gram-negative bacterial biofilms, there is still much to learn, especially about how structural characteristics help bridge the gap between the chemistry and physical aspects of the matrix. Here, we show that membrane vesicles (MVs), structures derived from the outer membrane of gram-negative bacteria, are a common particulate feature of the matrix of Pseudomonas aeruginosa biofilms. Biofilms grown using different model systems and growth conditions were shown to contain MVs when thin sectioned for transmission electron microscopy, and mechanically disrupted biofilms revealed MVs in association with intercellular material. MVs were also isolated from biofilms by employing techniques for matrix isolation and a modified MV isolation protocol. Together these observations verified the presence and frequency of MVs and indicated that MVs were a definite component of the matrix. Characterization of planktonic and biofilm-derived MVs revealed quantitative and qualitative differences between the two and indicated functional roles, such as proteolytic activity and binding of antibiotics. The ubiquity of MVs was supported by observations of biofilms from a variety of natural environments outside the laboratory and established MVs as common biofilm constituents. MVs appear to be important and relatively unacknowledged particulate components of the matrix of gram-negative or mixed bacterial biofilms.  相似文献   

16.
We have previously shown that the tumor promoter 4 beta-phorbol 12-myristate 13-acetate (PMA) induces capillary endothelial cells grown to confluency on the surface of three-dimensional collagen gels to invade the underlying matrix and to form capillary-like tubular structures, a phenomenon mimicking angiogenic processes that occur in vivo (Montesano and Orci: Cell, 42:469-477, 1985). Since angiogenesis frequently occurs within a fibrin-rich extracellular matrix, we have examined the ability of PMA-treated endothelial cells to invade fibrin gels. Control endothelial cells grown on fibrin gels formed a confluent monolayer on the gel surface and did not invade the underlying matrix. Treatment of the cultures with PMA resulted in a progressive lysis of the substrate without invasion of the fibrin matrix. However, if the cells were treated with PMA either in the presence of fibrinolytic inhibitors (Trasylol, epsilon-aminocaproic acid) or in the absence of detectable plasminogen, dissolution of the substrate was prevented, and the endothelial cells invaded the fibrin gel, forming vessel-like tubular structures similar to those previously observed with collagen gels. These results demonstrate that the invasive and morphogenetic events induced by PMA do not necessarily require an interaction between endothelial cells and collagen fibrils but can also occur with other biologically relevant substrata. They also suggest (1) that invasion may occur via a plasmin-independent mechanism and (2) that in vivo, neutralization of excess proteolytic activity may play an important permissive role in angiogenesis and other invasive processes by preventing uncontrolled matrix degradation.  相似文献   

17.
The relationship between the adhesion of five human colorectal carcinoma cell lines to extracellular matrix (ECM) proteins, namely type I collagen, type IV collagen, fibronectin, laminin and basement membrane extract (Matrigel), and the ability of these cells to express morphological differentiation when grown in a basement membrane extract (Matrigel) or on normal rat mesenchymal cells has been examined. Two cell lines, SW1222 and HRA-19, organised into glandular structures, with well-defined polarity when cultured on both substrata as well as in three-dimensional (3D) collagen gel culture as previously shown. The remaining three cell lines (SW620, SW480 and HT29) grew as loose aggregates or as they would normally grow on tissue culture plastic. Addition to the culture medium of a hexapeptide, containing the cell-matrix recognition sequence arginine-glycine-aspartic acid (RGD), inhibited attachment and glandular formation of SW1222 and HRA-19 when these cells were grown on living mesenchymal cells, but not in Matrigel. The morphological differentiation of HRA-19 cells in 3D-collagen was also inhibited by the same RGD-containing peptide, as previously shown for SW1222 cells. Attachment of the remaining three cell lines was inhibited on mesenchyme but not in Matrigel, further supporting the specificity of the peptide effect on epithelial-mesenchymal binding. In conclusion we have shown that colorectal tumour cells are able to bind ECM proteins and that the cellular binding is an essential step in the induction of the morphological differentiation seen on living mesenchymal cells, in basement membrane extracts and in type I collagen gel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Malachite green combined with glutaraldehyde has been used recently as a fixative for preserving and revaling lipid complexes in thin sections of eukaryotic cells examined by electron microscopy. When bacteria were prefixed with the above mixture granular electron dense inclusions were revealed in all cultures tested. These inclusions were replaced by electron transparent areas in cells fixed with glutaraldehyde alone. The structures were frequently located near to or within the nucleoid and adjacent to the cell membrane in Gram-negative bacteria and were associated with the nucleoid and mesosomes in Gram-positive species. Polyhydroxybutyrate granules, generally poorly preserved in thin sections of Aquaspirillum serpens, were well preserved by the malachite green-glutaraldehyde fixative. Malachite green complexes were observed outside of the cells in all preparations. Capsules were neither preserved nor stained.  相似文献   

19.
Malachite green combined with glutaraldehyde has been used recently as a fixative for preserving and revealing lipid complexes in thin sections of eukaryotic cells examined by electron microscopy. When bacteria were prefixed with the above mixture granular electron dense inclusions were revealed in all cultures tested. These inclusions were replaced by electron transparent areas in cells fixed with glutaraldehyde alone. The structures were frequently located near to or within the nucleoid and adjacent to the cell membrane in Gram-negative bacteria and were associated with the nucleoid and mesosomes in Gram-positive species. Polyhydroxybutyrate granules, generally poorly preserved in thin sections of Aquaspirillum serpens, were well preserved by the malachite green-glutaraldehyde fixative. Malachite green complexes were observed outside of the cells in all preparations. Capsules were neither preserved nor stained.  相似文献   

20.
lexuous filamentous, rod-shaped particles, and laminated, pinwheel inclusions were observed in the mesophyll cells of the barley plants naturally infected with barley yellow mosaic viruses. These virus particles had a length of 480–920 nm and a width of 10–20 nm. In addition, bundles of filamentous structures which consisted of many particles with more 2000 nm in length were found in the leaves of the infected barley plants. The ultrastructural alterations of the infected mesophyll cells were rather conspicuous. The cytoplasmic matrix was lost seriously, and the chloroplast membrane system was destroyed. The cristae and matrix of the mitochondrium were decreased and some of them became vacuoles. The endoplasmic reticulum (ER) expanded teristic membranous network structures occurred in the cytoplasm of infected cells. The virus particles were often associated at one end with ER and with the membranes of network structures. The nucleus, membrane and wall of ceils also had somewhat variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号