首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Positioning of nucleosomes in satellite I-containing chromatin of rat liver   总被引:3,自引:0,他引:3  
The location of nucleosomes on rat satellite I DNA has been investigated using a new approach. Nucleosome cores were prepared from rat liver nuclei with micrococcal nuclease, exonuclease III and nucleases S1. From the total population of core DNA fragments the satellite-containing fragments were isolated by molecular cloning and the complete sequence of 50 clones was determined. The location of nucleosomes along the satellite sequence was found to be non-random. Our results show that nucleosomes occupy a number of positions on satellite I DNA. About 35 to 50% of all nucleosomes are positioned in two corresponding major sites, the remainder in about 16 less preferred sites. The major nucleosome positions are apparently strictly defined with the precision of a single base-pair. These results were confirmed by other approaches, including restriction nuclease digestion experiments. There are good indications of a defined long-range organization of the satellite chromatin fiber in two or more oligonucleosomal arrays with distinct nucleosome configurations.  相似文献   

3.
A direct end label method was used to study the positioning of nucleosome arrays on several long (greater than 2200 base pairs) SV40 DNA fragments reconstituted in vitro with core histones. Comparison of micrococcal nuclease cutting sites in reconstituted and naked DNA fragments revealed substantial differences in one DNA region. When sufficient core histones were annealed with the DNA to form closely spaced nucleosomes over most of the molecule, a uniquely positioned array of four nucleosomes could be assigned, by strict criteria, to a 610-base pair portion of the SV40 "late region," with a precision of about +/- 20 base pairs. In some other DNA regions, a number of alternative nucleosome positions were indicated. The uniquely positioned four-nucleosome array spanned the same 610 nucleotides on two different DNA fragments that possessed different ends. Removal of a DNA region that had contained a terminal nucleosome of the array, by truncation of the fragment before reconstitution, did not affect the positioning of the other three nucleosomes. As the core histone to DNA ratio was lowered, evidence for specific positioning of nucleosomes diminished, except within the region where the four uniquely positioned nucleosomes formed. This region, however, does not appear to have a higher affinity for core histones than other regions of the DNA.  相似文献   

4.
The structure of simian virus 40 (SV40) chromatin was probed by treatment with single- and multiple-site bacterial restriction endonucleases. Approximately the same fraction of the chromatin DNA was cleaved by each of three different single-site endonucleases, indicating that the nucleosomes do not have unique positions with regard to specific nucleotide sequences within the population of chromatin molecules. However, the extent of digestion was found to be strongly influenced by salt concentration. At 100 mM NaCl-5 mM MgCl2, only about 20% of the simian virus 40 (SV40) DNA I in chromatin was converted to linear SV40 DNA III. In contrast, at lower concentrations of NaCl (0.05 or 0.01 M), an additional 20 to 30% of the DNA was cleaved. These results suggest that at 100 mM NaCl only the DNA between nucleosomes was accessible to the restriction enzymes, whereas at the lower salt concentrations, DNA within the nucleosome regions became available for cleavage. Surprisingly, when SV40 chromatin was digested with multiple-site restriction enzymes, less than 2% of the DNA was digested to limit digest fragment, whereas only a small fraction (9 to 15%) received two or more cuts. Instead, the principal digest fragment was full-length linear SV40 DNA III. The failure to generate limit digest fragments was not a consequence of reduced enzyme activity in the reaction mixtures or of histone exchange. When the position of the principal cleavage site was mapped after HpaI digestion, it was found that this site was not unique. Nevertheless, all sites wree not cleaved with equal probability. An additional finding was that SV40 chromatin containing nicked-circular DNA II produced by random nicking of DNA I was also resistant to digestion by restriction enzymes. These results suggest that the initial cut which causes relaxation of topological constraint in SV40 chromatin DNA imparts resistance to further digestion by restriction enzymes. We propose that this may be accomplished by either "winding" of the internucleosomal DNA into the body of the nucleosome, or as suggested by others, by successive right-hand rotation of nucleosomes.  相似文献   

5.
We have assessed the ability of nucleosomes to influence the formation of mammalian topoisomerase II-DNA complexes by mapping the sites of cleavage induced by four unrelated topoisomerase II inhibitors in naked versus nucleosome-reconstituted SV40 DNA. DNA fragments were reconstituted with histone octamers from HeLa cells by the histone exchange method. Nucleosome positions were determined by comparing micrococcal nuclease cleavage patterns of nucleosome-reconstituted and naked DNA. Three types of DNA regions were defined: 1) regions with fixed nucleosome positioning; 2) regions lacking regular nucleosome phasing; and 3) a region around the replication origin (from position 5100 to 600) with no detectable nucleosomes. Topoisomerase II cleavage sites were suppressed in nucleosomes and persisted or were enhanced in linker DNA and in the nucleosome-free region around the replication origin. Incubation of reconstituted chromatin with topoisomerase II protected nucleosome-free regions from micrococcal nuclease cleavage without changing the overall micrococcal nuclease cleavage pattern. Thus, the present results indicate that topoisomerase II binds preferentially to nucleosome-free DNA and that the presence of nucleosomes at preferred DNA sequences influences drug-induced DNA breaks by topoisomerase II inhibitors.  相似文献   

6.
7.
Evidence is provided that the nucleotide triplet con-sensus non-T(A/T)G (abbreviated to VWG) influences nucleosome positioning and nucleosome alignment into regular arrays. This triplet consensus has been recently found to exhibit a fairly strong 10 bp periodicity in human DNA, implicating it in anisotropic DNA bendability. It is demonstrated that the experimentally determined preferences for nucleosome positioning in native SV40 chromatin can, to a large extent, be pre-dicted simply by counting the occurrences of the period-10 VWG consensus. Nucleosomes tend to form in regions of the SV40 genome that contain high counts of period-10 VWG and/or avoid regions with low counts. In contrast, periodic occurrences of the dinucleotides AA/TT, implicated in the rotational positioning of DNA in nucleosomes, did not correlate with the preferred nucleosome locations in SV40 chromatin. Periodic occurrences of AA did correlate with preferred nucleosome locations in a region of SV40 DNA where VWG occurrences are low. Regular oscillations in period-10 VWG counts with a dinucleosome period were found in vertebrate DNA regions that aligned nucleosomes into regular arrays in vitro in the presence of linker histone. Escherichia coli and plasmid DNA, which fail to align nucleosomes in vitro, lacked these regular VWG oscillations.  相似文献   

8.
9.
10.
Phasing of nucleosomes in SV40 chromatin reconstituted in vitro   总被引:4,自引:0,他引:4  
  相似文献   

11.
12.
B Wittig  S Wittig 《Cell》1979,18(4):1173-1183
DNA (760 bp) isolated from nucleosome tetramers of staphylococcal nuclease-digested chicken embryo chromatin was highly enriched for tRNA genes and subsequently cloned in E. coli chi 1776. The location of genes coding for chicken embryo tRNALys, tRNAPhe and tRNAiMet within the cloned nucleosome tetramer DNA was determined using restriction endonucleases for which single cleavage sites could be predicted from the respective tRNA base sequence. All our tRNA genes reside nonrandomly at four locations on nucleosome tetramer DNA. The spacing between the tRNA gene locations is approximately 190 bp, similar to the DNA repeat length of chicken embryo chromatin. The four tRNA gene locations were also defined in noncloned nucleosome tetramer DNA highly enriched for tRNA genes. The majority of genes coding for tRNALys, tRNAPhe and tRNAiMet, respectively, are located in equal proportion 40-45, 230, 420 and 610 bp distant from the 5' end of the tRNA-identical strand. Thus the tRNA structural gene sequences all appear to begin about 20 bp "inside" the nucleosome core. As observed with nucleosomal DNA not enriched for tRNA genes, the phase relationship between tRNA genes and nucleosome location is maintained over a distance of 4-6 subsequent nucleosomes. A cloned molecule of nucleosomal DNA containing both a tRNALys gene and a tRNAiMet gene in the same polarity reveals that a phase adjustment might be necessary for the nucleosomes between these two tRNA genes in chicken embryo chromatin.  相似文献   

13.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

14.
We have used DNaseI and micrococcal nuclease sensitivity assays to determine the chromatin structures in the control regions of the Chlamydomonas reinhardtii HSP70A and RBCS2 genes. Both genes appear to be organized into nucleosome arrays, which exhibit shorter nucleosome repeat lengths than bulk chromatin. In HSP70A we have identified up to four confined DNaseI hypersensitive sites, three of them localize to the promoter region, a fourth one to the fourth intron. Three hypersensitive sites map close to putative heat shock elements, one close to a CCAAT-box. All hypersensitive sites are located to internucleosomal linkers. Alternative nucleosome positions at half-nucleosomal phasing were constitutively detected in the HSP70A promoter region, indicating local chromatin remodelling. Upon heat shock, dramatic changes in the nucleosome structure of HSP70A were detected that particularly affected the promoter, but also a region within the fourth intron. In contrast, light induction entailed no change in HSP70A chromatin. In the RBCS2 control region we identified a strong DNaseI hypersensitive site that maps close to a CCAAT-box. This site forms the boundary of a nucleosome array with a region of ~700 bp apparently devoid of nucleosomes. This study demonstrates that chromatin structure may be determined readily at fairly high resolution in Chlamydomonas, suggesting this organism as a well-suited model for studying the role of chromatin structure on gene expression in photosynthetic eukaryotes.  相似文献   

15.
Exonuclease III digests DNA sequentially from the 3' end. This enzyme is used to analyse the location of nucleosomes on DNA fragments containing a particular 145 base-pair (bp) sequence. When one of these fragments is assembled into chromatin and digested with exonuclease, a strong and persistent pause in digestion is detected at a single location. That this pause is due to the enzyme encountering a nucleosome is suggested, firstly, by its absence from digests of free DNA and, secondly, by the detection of a corresponding pause on the other strand. The two pauses, 146 bp apart, specify the location of a single precisely positioned nucleosome on the DNA fragment. This position corresponds exactly to one of two possible positions of the 145 bp sequence identified previously. A fragment containing only about 80 bp of the original 145 bp continues to position itself in the nucleosome like the parent sequence. Therefore, some of the sequence can be replaced with different DNA without affecting nucleosome positioning. Further exonuclease III analysis of an extensive set of deletions demonstrates that a central region of about 40 bp is essential for positioning the 145 bp sequence. When deletions advance into this region from either side, only a very small proportion of the DNA remains in the original position on the nucleosome. Therefore, the two short lengths of DNA at the edges of the region must each contain all or part of an essential nucleosome-positioning signal. These two critical sequences are symmetrically located across the nucleosome dyad and interact with the same region of histone H3. The sequence TGC occurs at the same place in both sequences; otherwise they are dissimilar.  相似文献   

16.
The fate of parental nucleosomes during the replication of chromatin templates was studied using a modification of the cell-free SV40 DNA replication system. Plasmid DNA molecules containing the SV40 origin were assembled into chromatin with purified core histones and fractionated assembly factors derived from HeLa cells. When these templates were replicated in vitro, the resulting progeny retained a nucleosomal organization. To determine whether the nucleosomes associated with the progeny molecules resulted from displacement of parental histones during replication followed by reassembly, the replication reactions were performed in the presence of control templates. It was observed that the progeny genomes resulting from the replication of chromatin templates retained a nucleosomal structure, whereas the progeny of the control DNA molecules were not assembled into chromatin. Additional experiments, involving direct addition of histones to the replication reaction mixtures, confirmed that the control templates were not sequestered in some form which made them unavailable for nucleosome assembly. Thus, our data demonstrate that parental nucleosomes remain associated with the replicating molecules and are transferred to the progeny molecules without displacement into solution. We propose a simple model in which nucleosomes ahead of the fork are transferred intact to the newly synthesized daughter duplexes.  相似文献   

17.
The effect of several simple repeating DNA sequences--d(CG.GC)5, d(CA.GT)30, and d(A.T)60--on the nucleosomal organization of the SV40 minichromosome is analyzed. These three different sequences were cloned at the Hpa II site of SV40 (position 346) which occurs at the 3' border of the nucleosome-free SV40 control region. Our results show that neither the d(A.T)60 sequence nor the d(CG.GC)5 sequence appear to have any relevant effect on the nucleosomal organization of the region of the minichromosome surrounding the inserted repeated sequence. Both sequences are hypersensitive to micrococcal nuclease cleavage in the minichromosome, indicating that they are not organized into nucleosomes. On the other hand, the d(CA.GT)30 sequence is found organized as nucleosomes and causes the delocation of nucleosomes in the minichromosomal region close to the inserted repeated sequence.  相似文献   

18.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

19.
20.
In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号