首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

2.
Gene and genome duplications are commonly regarded as being of major evolutionary significance. But how often does gene duplication occur? And, once duplicated, what are the fates of duplicated genes? How do they contribute to evolution? In a recent article, Lynch and Conery analyze divergence between duplicate genes from six eukaryotic genomes. They estimate the rate of gene duplication, the rate of gene loss after duplication and the strength of selection experienced by duplicate genes. They conclude that although the rate of gene duplications is high, so is the rate of gene loss, and they argue that gene duplications could be a major factor in speciation.  相似文献   

3.
Gene duplication events are important sources of novel gene functions. However, more often than not, a duplicate gene may lose its function and become a pseudogene. What is the relative frequency of these two scenarios: functional divergence versus gene loss? Given that most non-neutral mutations are deleterious, gene loss should be far more frequent than divergence. However, a recent empirical study suggests that about 50% of all gene duplications will lead to functional divergence. The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution. Reasons for this unexpectedly high frequency of functional divergence are discussed.  相似文献   

4.
Several eukaryotic genomes have been completely sequenced and this provides an opportunity to investigate the extent and characteristics (e.g., single gene duplication, block duplication, etc.) of gene duplication in a genome. Detecting duplicate genes in a genome, however, is not a simple problem because of several complications such as domain shuffling, the existence of isoforms derived from alternative splicing, and annotational errors in the databases. We describe a method for overcoming these difficulties and the extents of gene duplication in the genomes of Drosophila melanogaster, Caenorhabditis elegans, and yeast inferred from this method. We also describe a method for detecting block duplications in a genome. Application of this method showed that block duplication is a common phenomenon in both yeast and nematode. The patterns of block duplication in the two species are, however, markedly different. Yeast shows much more extensive block duplication than nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in yeast the majority of block duplications occurred between chromosomes, while in nematode most block duplications occurred within chromosomes.  相似文献   

5.
Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light-strand replication and the nearby tRNA genes or the regions flanking the origin of heavy-strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and nontandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mitochondrial DNAs, up to 25% of the total length is composed of tandem duplications of noncoding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with the otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intramolecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.  相似文献   

6.
7.
Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic interactions than singletons and WGD-duplicates; (b) SSD-duplicates copies share more interaction-partners than WGD-duplicates copies; (c) WGD-duplicates interaction partners are more functionally related than SSD-duplicates partners; (d) SSD-duplicates gene copies are more functionally divergent from one another, while keeping more overlapping functions, and diverge in their sub-cellular locations more than WGD-duplicates copies; and (e) SSD-duplicates complement their functions to a greater extent than WGD–duplicates. We propose a novel model that uncovers the complexity of evolution after gene duplication.  相似文献   

8.
Gene duplication is one of the main mechanisms by which genomes can acquire novel functions. It has been proposed that the retention of gene duplicates can be associated to processes of tissue expression divergence. These models predict that acquisition of divergent expression patterns should be acquired shortly after the duplication, and that larger divergence in tissue expression would be expected for paralogs, as compared to orthologs of a similar age. Many studies have shown that gene duplicates tend to have divergent expression patterns and that gene family expansions are associated with high levels of tissue specificity. However, the timeframe in which these processes occur have rarely been investigated in detail, particularly in vertebrates, and most analyses do not include direct comparisons of orthologs as a baseline for the expected levels of tissue specificity in absence of duplications. To assess the specific contribution of duplications to expression divergence, we combine here phylogenetic analyses and expression data from human and mouse. In particular, we study differences in spatial expression among human-mouse paralogs, specifically duplicated after the radiation of mammals, and compare them to pairs of orthologs in the same species. Our results show that gene duplication leads to increased levels of tissue specificity and that this tends to occur promptly after the duplication event.  相似文献   

9.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

10.
We have previously shown that computer simulations of processes that generate selectively advantageous changes together with random duplications and deletions give rise to genomes with many different genes embedded in a large amount of dispensable DNA sequence. We now explore the consequences of neutral changes on the evolution of genomes. We follow the consequences of sequence divergences that are neutral when they occur in dispensable sequences or extra copies of genes present in multigene families. We find that when divergence occurs at about the same frequency as duplication/deletion events, genomes carry repetitive sequences in proportion to their size. Inspection of the genomes as they evolved showed that multigene families were generated by relatively recent duplications of single genes and so would be expected to be highly homogeneous.  相似文献   

11.
12.
基因重复是普遍存在的生物学现象, 是基因组和遗传系统多样化的重要推动力量, 在生物进化过程中发挥着极其重要的作用。基因重复有何利弊, 基因发生重复后, 2个重复子拷贝的保留在基因功能方面是否存在偏好性, 子拷贝在表达和进化速率上如何分化, 以及重复基因为什么会被保留下来一直是进化生物学领域研究的热点问题之一。该文对以上重复基因研究的热点问题进行了介绍, 并对重复基因的进化机制和理论模型及其近年来的一些主要研究进展进行了综述。  相似文献   

13.
Plant nuclear genomes exhibit extensive structural variation in size, chromosome number, number and arrangement of genes, and number of genome copies per nucleus. This variation is the outcome of a set of highly active processes, including gene duplication and deletion, chromosomal duplication followed by gene loss, amplification of retrotransposons separating genes, and genome rearrangement, the latter often following hybridization and/or polyploidy. While these changes occur continuously, it is not surprising that some of them should be fixed evolutionarily and come to mark major clades. Large-scale duplications pre-date the radiation of Brassicaceae and Poaceae and correlate with the origin of many smaller clades as well. Nuclear genomes are largely colinear among closely related species, but more rearrangements are observed with increasing phylogenetic distance; however, the correlation between amount of rearrangement and time since divergence is not perfect. By changing patterns of gene expression and triggering genome rearrangements, novel combinations of genomes (hybrids) may be a driving force in evolution.  相似文献   

14.
15.
J. H. Nadeau  D. Sankoff 《Genetics》1997,147(3):1259-1266
Duplicated genes are an important source of new protein functions and novel developmental and physiological pathways. Whereas most models for fate of duplicated genes show that they tend to be rapidly lost, models for pathway evolution suggest that many duplicated genes rapidly acquire novel functions. Little empirical evidence is available, however, for the relative rates of gene loss vs. divergence to help resolve these contradictory expectations. Gene families resulting from genome duplications provide an opportunity to address this apparent contradiction. With genome duplication, the number of duplicated genes in a gene family is at most 2(n), where n is the number of duplications. The size of each gene family, e.g., 1, 2, 3, . . . , 2(n), reflects the patterns of gene loss vs. functional divergence after duplication. We focused on gene families in humans and mice that arose from genome duplications in early vertebrate evolution and we analyzed the frequency distribution of gene family size, i.e., the number of families with two, three or four members. All the models that we evaluated showed that duplicated genes are almost as likely to acquire a new and essential function as to be lost through acquisition of mutations that compromise protein function. An explanation for the unexpectedly high rate of functional divergence is that duplication allows genes to accumulate more neutral than disadvantageous mutations, thereby providing more opportunities to acquire diversified functions and pathways.  相似文献   

16.
Spiders spin a functionally diverse array of silk fibers, each composed of one or more unique proteins. Most of these proteins, in turn, are encoded by members of a single gene family thought to have arisen through duplication and divergence of an ancestral silk gene. Because of its remarkable mechanical properties, orb weaver dragline silk, a composite of 2 proteins (MaSp1 and MaSp2), is the best studied. Here, we demonstrate that multiple loci encode MaSp1 in widow spiders (Latrodectus). Because these copies may be the result of more recent duplication events than those leading to the currently recognized silk gene paralogs, they offer insight into the early evolutionary fate of silk gene duplicates. In addition to 3 presumed functional MaSp1 loci in Latrodectus hesperus (Western black widow) and Latrodectus geometricus (brown widow) genomes, we find a MaSp1 pseudogene in L. hesperus, demonstrating the potential for unrecognized extinction of silk gene paralogs. We also document recombination events among L. hesperus MaSp1 loci and between Latrodectus MaSp1 loci and MaSp2. This result supports the hypothesis that concerted evolution occurs not only within an individual silk gene but also among silk gene paralogs. One of the L. geometricus MaSp1 copies encodes a protein that has diverged in amino acid composition and potentially converged on the secondary structure of MaSp2. Based on the presence of multiple MaSp1 loci and the phylogenetic distribution of MaSp1 versus MaSp2, we propose that MaSp2 is derived from an ancestral MaSp1 duplicate. Finally, divergence has occurred in the upstream flanking sequences of the L. hesperus MaSp1 loci, the region most likely to contain regulatory motifs, providing ample opportunity for differential expression. However, the benefits associated with increased protein production may be the primary mechanism maintaining multiple functional MaSp1 copies in widow genomes.  相似文献   

17.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

18.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

19.
Gene duplication can increase an organism's ability to mask the effect of deleterious alleles present in the population, but this is typically a small effect when the source of the genetic variation is mutation. Migration can introduce orders of magnitude more deleterious alleles per generation and may therefore be an important force acting on the structure of genomes. Using formal analytical methods, we study the invasion of haplotypes containing two copies of the resident allele, assuming that a single-locus equilibrium is already established in a continent-island model of migration. Provided that the immigrant allele can be completely masked by multiple functional gene copies, a new duplication will deterministically spread so long as duplicate haplotypes are, on average, fitter than single-copy haplotypes. When fitness depends on the number of immigrant allele copies and their masking ability then the threshold for invasion depends on the rate of immigration and the rate of recombination between the gene copies. Results from several special cases, including formation of protein dimers and Dobzhansky-Muller incompatibilities, suggest that duplications can invade in a wide range of selection regimes. We hypothesize that duplication in response to gene flow may provide an explanation for the high levels of polymorphism in gene copy number observed in natural populations.  相似文献   

20.
Gene duplication occurs repeatedly in the evolution of genomes, and the rearrangement of genomic segments has also occurred repeatedly over the evolution of eukaryotes. We studied the interaction of these two factors in mammalian evolution by comparing the chromosomal distribution of multigene families in human and mouse. In both species, gene families tended to be confined to a single chromosome to a greater extent than expected by chance. The average number of families shared between chromosomes was nearly 60% higher in mouse than in human, and human chromosomes rarely shared large numbers of gene families with more than one or two other chromosomes, whereas mouse chromosomes frequently did so. A higher proportion of duplicate gene pairs on the same chromosome originated from recent duplications in human than in mouse, whereas a higher proportion of duplicate gene pairs on separate chromosomes arose from ancient duplications in human than in mouse. These observations are most easily explained by the hypotheses that (1) most gene duplications arise in tandem and are subsequently separated by segmental rearrangement events, and (2) that the process of segmental rearrangement has occurred at a higher rate in the lineage of mouse than in that of human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号