首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of horseradish peroxidase in indole-3-acetic acid oxidation   总被引:11,自引:0,他引:11  
L R Fox  W K Purves  H I Nakada 《Biochemistry》1965,4(12):2754-2763
  相似文献   

2.
We have previously proposed the horseradish peroxidase (HRP) and the non-toxic plant hormone indole-3-acetic acid (IAA) as a novel system for gene-directed enzyme/prodrug therapy (GDEPT). The cytotoxic potential of HRP/IAA GDEPT and the induction of a bystander effect were demonstrated in vitro under normoxic as well as hypoxic tumour conditions. To date, the chemical agents and the cellular targets involved in HRP/IAA-mediated toxicity have not been identified. In the present work, some of the molecular and morphological features of the cells treated with HRP/IAA gene therapy were analysed. Human T24 bladder carcinoma cells transiently transfected with the HRP cDNA and exposed to the prodrug IAA showed chromatin condensation, formation of apoptotic bodies, DNA fragmentation, and Annexin V binding. Similar effects were observed when the cells were incubated with the apoptotic agent cisplatin. Caspases appeared to be involved as effectors in HRP/IAA-mediated apoptosis, since treatment with a general caspase inhibitor decreased the fraction of cells with micronuclei (MN) by 30%, with fragmented DNA by 50%, and with condensed chromatin by 60%. However, very little degradation of one of the downstream targets of caspase-3, PARP, could be detected, and apoptosis alone did not appear to account for the killing levels measured with a clonogenic assay. The effect of HRP/IAA treatment on cell cycle progression was also investigated, and a rapid cytostatic effect, equally affecting all phases of the division cycle, was observed.  相似文献   

3.
During indoleacetic acid (IAA) oxidation by horseradish peroxidase the water soluble model polyene, crocin, is bleached. IAA-oxidation and crocin bleaching are stimulated at acidic pH as well as by the monophenol p-hydroxyacetophenone. IAA oxidation and crocin bleaching are neither influenced by catalase or superoxide dismutase nor by different OH-radical scavengers, whereas both ascorbate and propylgallate are inhibitory.  相似文献   

4.
5.
Park RD  Park CK 《Plant physiology》1987,84(3):826-829
The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation.  相似文献   

6.
The binding of indole to both horseradish peroxidase and its cyanide complex can be detected by difference spectra in the Soret region. Indole and cyanide binding are not competitive processes. The effect of indole on the binding rate constants between horseradish peroxidase and cyanide and compound I formation reactions between horseradish peroxidase and hydrogen peroxide or m-chloroperbenzoic acid was studied by the stopped-flow method. In all cases the rate constants of the indole-peroxidase complex with the ligand or substrates were smaller than those of free peroxidase. Since the m-chloroperbenzoic acid reaction has been shown to approach a diffusion-controlled rate, the effect of indole binding on the rate constant for compound I formation using this peracid was analyzed semiquantitatively using theoretical equations for a diffusion-controlled rate process with a capture-window active site model. The effect of indole binding on the diffusion-controlled rate constant could be explained by a decrease in the radius of the capture-window active site.  相似文献   

7.
Rhodobacter sphaeroides photoproduced indole 3-acetic acid (IAA) when the precursor L-tryptophan was added to the basal medium. Of the other organic carbon sources that influenced IAA formation from L-tryptophan, -ketoglutaric acid gave the maximum formation of 530 mg 1–1 in less than 24 h of illuminated anaerobic incubation. IAA was also produced from indole, glycine and glucose together by Rb. sphaeroides under photoanaerobic conditions yielding 61 mg l–1 within 30 fh.  相似文献   

8.
The peroxidase catalyzed oxidation of indole-3-acetate is inhibited by naturally occurring coumarins such as scopoletin. This inhibition is due to the preferential reactivity of the coumarins with the peroxidase compounds I, II, and III. In view of the possible growth regulatory role of coumarins in plants, the mechanism of oxidation of scopoletin by horse-radish peroxidase has been investigated.  相似文献   

9.
The combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) has recently been proposed as a novel cancer therapy. However, the mechanism underlying the cytotoxic effect involved is substantially unknown. Here, we show that IAA/HRP treatment induces apoptosis in G361 human melanoma cells, whereas IAA or HRP alone have no effect. It is known that IAA produces free radicals when oxidized by HRP. Because oxidative stress could induce apoptosis, we measured the production of free radicals at varying concentrations of IAA and HRP. Our results show that IAA/HRP produces free radicals in a dose-dependent manner, which are suppressed by ascorbic acid or (-)-epigallocatechin gallate (EGCG). Furthermore, antioxidants prevent IAA/HRP-induced apoptosis, indicating that the IAA/HRP-produced free radicals play an important role in the apoptotic process. In addition, IAA/HRP was observed to activate p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK), which are almost completely blocked by antioxidants. We further investigated the IAA/HRP-mediated apoptotic pathways, and found that IAA/HRP activates caspase-8 and caspase-9, leading to caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage. These events were also blocked by antioxidants, such as ascorbic acid or EGCG. Thus, we propose that IAA/HRP-induced free radicals lead to the apoptosis of human melanoma cells via both death receptor-mediated and mitochondrial apoptotic pathways.  相似文献   

10.
Stoichiometry of the reaction between horseradish peroxidase and p-cresol.   总被引:4,自引:0,他引:4  
Over a wide range of pH horseradish peroxidase compound I can be reduced quantitatively via compound II to the native enzyme by only 1 molar equivalent of p-cresol. Since 2 molar equivalents of electrons are required for the single turnover of the enzymatic cycle, p-cresol behaves as a 2-electron reductant. With p-cresol and compound I in a 1:1 ratio compound II and p-methylphenoxy radicals are obtained in the transient state. Compound II is then reduced to the native enzyme. A possible explanation for the facile reduction of compound II involves reaction with the dimerization product of these radicals, 1/2 molar equivalent of 2,2'-dihydroxy-5,5'-dimethylbiphenyl. If only 1/2 molar equivalent of p-cresol is present, than at high pH the reduction stops at compound II. The major steady state peroxidase oxidation product of p-cresol (with p-cresol in large excess compared to the enzyme concentration) is Pummerer's ketone. Pummerer's ketone is only reactive at pH values greater than about 9 where significant amounts of the enol can be formed via the enolate anion. Therefore, in alkaline solution it is reactive with compound I, but not with compound II, which is converted into an unreactive basic form. These results indicate that Pummerer's ketone cannot be the intermediate free radical product responsible for reducing compound II in the single turnover experiments. It is postulated that Pummerer's ketone is formed only in the steady state by the reaction of the p-methylphenoxy radical with excess p-cresol.  相似文献   

11.
The oxidation of indole-3-acetic acid (IAA) catalyzed by horseradish peroxidase (HRP) in the absence of added H2O2 was studied at pH 7.4 using spectral and kinetic approaches. Upon addition of a hundred-fold excess of IAA to HRP the native enzyme was rapidly transformed to compound II (HRP-II). HRP-II was the predominant catalytic enzyme species during the steady state. No compound III was observed. HRP-II was slowly transformed to the stable inactive verdohemo-protein, P-670. A precursor of P-670, so-called P-940 was not detected. After the cessation of IAA oxidation there was neither oxygen consumption nor P-670 formation; the remaining HRP-II was spontaneously reduced to native enzyme. Single exponential kinetics were observed in the steady state for IAA oxidation, oxygen consumption and P-670 formation yielding identical first order rate constants of about 6 . 10(4) s(-1). A comparison of the rate of IAA oxidation by HRP-II in the steady state and in the transient state indicated that more than 1 3 of the IAA was oxidized non-enzymatically during the steady state, confirming that a free radical chain reaction is involved in the peroxidase-catalyzed oxidation of IAA. IAA oxidation stopped before IAA was completely consumed, which cannot be ascribed to enzyme inactivation because 30-50% of the enzyme was still active after the end of the reaction. Instead, incomplete IAA oxidation is explained in terms of termination of the free radical chain reaction. Bimolecular rate constants of IAA oxidation by HRP-I and HRP-II determined under transient state conditions were (2.2 +/- 0.1) x 10(3) M(-1) s(-1) and (2.3 +/- 0.2) x 10(2) M(-1) s(-1).  相似文献   

12.
The indole moeity is present in many substances of biological occurrence. Its metabolism, in most cases, involves an oxidative pathway. This study reports the oxidation of a series of indole derivatives, including several of biological origin, catalyzed by horseradish peroxidase in the presence of H2O2. Chemiluminescence emission was observed in most cases and its intensity and spectral characteristics were correlated with structural features of the substrates. The structures of the main products were determined. The participation of molecular oxygen and superoxide ion in the reaction was demonstrated and a general mechanism for product formation proposed. Since the oxidation of 2-methylindole proved to be highly chemiluminescent, its potentiality as a developing system for peroxidase-based assays was tested and showed to be very effective.  相似文献   

13.
14.
15.
Horseradish peroxidase was reacted with glutaraldehyde under various reaction conditions. The reaction product was, in a second step, bound covalently to aminohexyl groups attached to Sepharose particles. The influence of pH, time and the concentration ratio of enzyme:glutaraldehyde on the reaction was evaluated. A first step reaction with 100-fold molar excess of glutaraldehyde to horseradish peroxidase at pH 9.5 for 2 hr at room temperature results in a high yield of conjugated enzyme with well preserved enzymatic activity.  相似文献   

16.
British Anti-Lewisite (BAL) binds to horseradish peroxidase in a manner which results in inhibition of both peroxidatic and oxidative functions of the enzyme. BAL competes with hydrogen peroxide for binding on peroxidase, and the inhibition of peroxidatic activity is irreversible. Solutions of purified horseradish peroxidase and individually resolved peroxidase isozymes show a gradual loss of peroxidatic activity with time when incubated with BAL. In these same treatments, however, the inhibition of indole-3-acetic acid (IAA) oxidase activity is immediate. With increasing amounts of enzyme in the incubation mixture, IAA oxidase activity is not completely inhibited and is observed following a lag period in the assay which shortens with longer incubation times. Peroxidase activity during this same time interval shows a lag period which increases with longer incubation times. Lowering the pH removed the lag period for oxidase activity, but did not change the pattern of peroxidase activity. These results suggest that the sites for the oxidation of indole-3-acetic acid and for peroxidatic activity may not be identical in horseradish peroxidase isozymes.  相似文献   

17.
Plant peroxidases (EC 1.11.1.7) including horseradish peroxidase (HRP-C), but not the nonplant peroxidases, are known to be highly specific indole-3-acetic acid (IAA) oxygenases which oxidize IAA in the absence of H2O2, and superoxide anion radicals (O2*-) are produced as by-products. Hypaphorine, a putative auxin antagonist isolated from ectomycorrhizal fungi, inhibited the IAA-dependent generation of O2*- by HRP-C, which occurs in the absence of H2O2. Hypaphorine has no effect on the nonspecific heme-catalyzed O2*- generation induced by high concentration of ethanol. It is probable that the inhibitory effect of hypaphorine on O2*- generation is highly specific to the IAA-dependent reaction. The mode of inhibition of the IAA-dependent O2*--generating reaction by hypaphorine was analyzed with a double-reciprocal plot and determined to be competitive inhibition, indicating that hypaphorine competes with IAA by binding to the putative IAA binding site on HRP-C. This implies the importance of structural similarity between hypaphorine and IAA. This work presented the first evidence for antagonism between IAA and a structurally related fungal alkaloid on binding to a purified protein which shares some structural similarity with auxin-binding proteins.  相似文献   

18.
19.
20.
Changes in indole-3-acetic acid (IAA) content of peach (Prunus persica L. Batsch cv. Merry) seeds were followed during fruit development. The highest concentration of IAA, 2.7 g/g fresh weight, was found at the beginning of Stage III of fruit development, approximately 50–60 days after anthesis. The IAA-decarboxylating capacity of crude extracts of seeds was also greatest at 55–60 days after anthesis. Four soluble peroxidase isoenzymes were found on anionic electrophoresis. There were no marked changes in two isoenzymes (R f 0.23 and 0.51), which were present in all three stages of fruit growth. There was a marked increase in a band atR f 0.59 between Stages II and III, and a decrease in a band atR f 0.68 from Stages II to III. Neither band (R f 0.59 and 0.68) was present at Stage I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号