首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1.  相似文献   

2.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

3.
Prostaglandin F2alpha (PGF2alpha) is an important mediator of corpus luteum (CL) regression, although the cellular signaling events that mediate this process have not been clearly identified. It is established that PGF2alpha binds to a G-proteincoupled receptor (GPCR) to stimulate protein kinase C (PKC) and Raf-MEK-Erk signaling in luteal cells. The present experiments were performed to determine whether PGF2alpha stimulates the mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase 1 (S6K1) signaling pathway in steroidogenic luteal cells. We demonstrate that PGF2alpha treatment results in a timeand concentration-dependent stimulation of the phosphorylation and activation of S6K1. The stimulation of S6K1 in response to PGF2alpha treatment was abolished by the mTOR inhibitor rapamycin. Treatment with PGF2alpha did not increase AKT phosphorylation but increased the phosphorylation of Erk and the tumor suppressor protein tuberous sclerosis complex 2 (TSC2), an upstream regulator of mTOR. The effects of PGF2alpha were mimicked by the PKC activator PMA and inhibited by U0126, a MEK1 inhibitor. The activation of mTOR/S6K1 and putative down stream processes involving the translational apparatus (i.e. 4EBP1 phosphorylation, release of 4EBP1 binding in m(7)G cap binding assays, and the phosphorylation and synthesis of S6) were completely sensitive to treatment with rapamycin, implicating mTOR in the actions of PGF2alpha. Taken together, our data suggest that GPCR activation in response to PGF2alpha stimulates the mTOR pathway which increases the translational machinery in luteal cells. The translation of proteins under the control of mTOR may have implications for luteal development and regression and offer new strategies for therapeutic intervention in PGF2alpha-target tissues.  相似文献   

4.
Interleukin 2 (IL-2) and the synthetic diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), a direct activator of protein kinase C, induce phosphorylation of the ribosomal S6 protein in a murine IL-2-dependent lymphocyte clone. The phosphorylation of S6 protein was correlated with increased protein synthesis in this cell line. Using cell-free assay systems, two unique kinases capable of phosphorylating the S6 protein were identified, namely, a calcium/phospholipid-dependent phosphotransferase, protein kinase C, and a second phospholipid-independent kinase detected in crude cytosolic fractions. Peptide mapping of the S6 protein demonstrated that the degree of S6 phosphorylation stimulated by IL-2 and OAG was similar to that achieved using the second (calcium/phospholipid-independent) kinase but not to the level of phosphorylation achieved with protein kinase C. The kinase responsible for phosphorylating S6 was soluble in stimulated cells and was induced in a time-dependent manner by either IL-2 or diacylglycerol treatment of intact cells. These data support the notion that, although protein kinase C is activated by IL-2 or OAG, subsequent events such as S6 phosphorylation may be the result of the activation of secondary phosphotransferase systems regulated by protein kinase C.  相似文献   

5.
Integrin family of adhesion receptors play an important role in organizing the actin cytoskeleton and in signal transduction from the extracellular matrix. The previous studies have shown that exposure of fibroblast cells to extracellular matrix proteins activates ribosomal S6 kinase 1 (S6K1) pathway in a ligand dependent manner. Recently, a new, highly homologous ribosomal S6 kinase, termed S6K2, was identified. It has 70% amino acid identity in the overall sequence with S6K1, and the potential phosphorylation sites of S6K1 are conserved in S6K2. However, the N- and C-terminal domains of S6K2 are quite different from those of S6K1. In this study we have examined dynamics of fibronectin-induced activation of these two kinases, transiently expressed in human HEK 293 cells. Differences between profiles of activation of S6K1 and S6K2 were observed in the early period of fibronectin stimulation. Fibronectin-induced changes in S6K2 activity were closely correlated with phosphorylation at Ser423, which is homologues to Ser 434 of S6K1. Although we didn't observe considerable changes in phosphorylation of S6K1 at Ser434, suggesting potential differences in the regulation of these homologous kinases upon fibronectin stimulation.  相似文献   

6.
7.
Recently we purified and cloned the mitogen/oncogene-activated Mr 70,000 (70K) S6 kinase from the livers of rats treated with cycloheximide (Kozma, S. C., Lane, H. A., Ferrari, S., Luther, H., Siegmann, M., and Thomas, G. (1989) EMBO J. 8, 4125-4132; Kozma, S. C., Ferrari, S., Bassand, P., Siegmann, M., Totty, N., and Thomas, G. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7365-7369). Prior to determining the ability of this kinase to phosphorylate the same sites observed in S6 in vivo, we established the effects of different cations and autophosphorylation on kinase activity. The results show that the 70K S6 kinase is dependent on Mg2+ for activity and that this requirement cannot be substituted for by Mn2+. Furthermore, 50-fold lower concentrations of Mn2+ block the effect of Mg2+ on the kinase. This effect is not limited to Mn2+ but can be substituted for by a number of cations, with Zn2+ being the most potent inhibitor, IC50 approximately 2 microM. In the presence of optimum Mg2+ concentrations the enzyme incorporates an average of 1.2 mol of phosphate/mol of kinase and an average of 3.7 mol of phosphate/mol of S6. The autophosphorylation reaction appears to be intramolecular and leads to a 25% reduction in kinase activity toward S6. In the case of S6 all of the sites of phosphorylation are found to reside in a 19-amino acid peptide at the carboxyl end of the protein. Four of these sites have been identified as Ser235, Ser236, Ser240, and Ser244, equivalent to four of the five sites previously observed in vivo (Krieg, J., Hofsteenge, J., and Thomas, G. (1988) J. Biol. Chem. 263, 11473-11477). A fifth mole of phosphate is incorporated at low stoichiometry into the peptide, but the amino acid which is phosphorylated cannot be unequivocally assigned. The low level of phosphorylation of the fifth site in vitro is discussed with regard to known results and to a potential three-dimensional model for the carboxyl terminus of S6.  相似文献   

8.
In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.  相似文献   

9.
Phosphorylated ribosomal proteins were isolated from Xenopus 40 S ribosomal subunits by reversed-phase high performance liquid chromatography (HPLC) to enable direct analysis of the phosphorylation sites in ribosomal protein S6. Xenopus S6 closely resembled mammalian S6 with respect to the following properties: (i) reversed-phase HPLC elution behavior, (ii) amino-terminal sequence (96% identity in the first 37 residues), and (iii) an identical sequence within the region of its phosphorylation sites. Whereas S6 was the only ribosomal protein phosphorylated in vitro by Xenopus S6 kinase II, ribosomes phosphorylated in vivo were found to be associated with an additional phosphoprotein having an amino-terminal sequence identical to that of the ubiquitin carboxyl-terminal extension protein CEP 80. S6 kinase II phosphorylated at least four sites (serines 1-3 and 5) in the sequence Arg-Arg-Leu-Ser(1)-Ser(2)-Leu-Arg-Ala-Ser(3)-Thr-Ser(4)-Lys-Ser(5)-, which correspond to the residues known to be phosphorylated in the carboxyl-terminal region of mammalian S6. The in vivo S6 phosphorylation sites in maturing Xenopus oocytes were shown to be located within the same cluster of serine residues, although individual sites were not identified. Kinetic analysis of S6 kinase II-catalyzed phosphorylation events indicated a simple sequential mechanism of multisite phosphorylation initiating at either serine 2 (preferred) or serine 1, with the rates of phosphorylation of individual sites occurring in the order serine 2 greater than serine 1 greater than serine 3 greater than serine 5.  相似文献   

10.
The serine/threonine kinase p70 S6 kinase (p70S6K) phosphorylates the 40 S ribosomal protein S6, modulating the translation of an mRNA subset that encodes ribosomal proteins and translation elongation factors. p70S6K is activated in response to mitogenic stimuli and is required for progression through the G(1) phase of the cell cycle and for cell growth. Activation of p70S6K is regulated by phosphorylation of seven different residues distributed throughout the protein, a subset of which depends on the activity of p85/p110 phosphatidylinositol 3-kinase (PI3K); in fact, the phosphorylation status of Thr(229) and Thr(389) is intimately linked to PI3K activity. In the full-length enzyme, however, these sites are also acutely sensitive to the action of FKBP 12-rapamycin-associated protein (FRAP). The mechanism by which PI3K and FRAP cooperate to induce p70S6K activation remains unclear. Here we show that the p85 regulatory subunit of PI3K also controls p70S6K activation by mediating formation of a ternary complex with p70S6K and FRAP. The p85 C-terminal SH2 domain is responsible for p85 coupling to p70S6K and FRAP, because deletion of the C-terminal SH2 domain inhibits complex formation and impairs p70S6K activation by PI3K. Formation of this complex is not required for activation of a FRAP-independent form of p70S6K, however, underscoring the role of p85 in regulating FRAP-dependent p70S6K activation. These studies thus show that, in addition to the contribution of PI3K activity, the p85 regulatory subunit plays a critical role in p70S6K activation.  相似文献   

11.
The addition of leucine induced activation of p70S6k in amino acid-depleted H4IIE cells. Whereas the activation of p70S6k by leucine was transient, the complete amino acid stimulated p70S6k more persistently. The effect of leucine on p70S6k was sensitive to rapamycin, but less sensitive to wortmannin. Using various amino acids and derivatives of leucine, we found that the chirality, the structure of the four branched hydrocarbons, and the primary amine are required for the ability of leucine to stimulate p70S6k, indicating that the structural requirement of leucine to induce p70S6k activation is very strict and precise. In addition, some leucine derivatives exhibited the ability to stimulate p70S6k and the other derivatives acted as inhibitors against the leucine-induced activation of p70S6k.  相似文献   

12.
Ribosomal protein S6 (S6rp) is phosphorylated by the p70S6K enzyme in mammals, under mitogen/IGF regulation. This event has been correlated with an increase in 5'TOP mRNA translation. In this research, a maize S6 kinase (ZmS6K) was isolated from maize (Zea mays L.) embryonic axes by human p70S6K antibody immunoprecipitation. This enzyme, a 62 kDa peptide, proved to be specific for S6rp phosphorylation, as revealed by in vivo and in vitro kinase activity using either the 40S ribosomal subunit or the RSK synthetic peptide as the substrates. ZmS6K activation was achieved by phosphorylation on serine/threonine residues. Specific phospho-Threo recognition by the p70S6K antibody directed to target phospho-Threo residue 389 correlated with ZmS6K activation. The ZmS6K protein content remained almost steady during maize seed germination, whereas the ZmS6K activity increased during this process, consistent with Zm6SK phosphorylation. Addition of insulin to germinating maize axes proved to increase ZmS6K activity and the extent of S6rp phosphorylation. These events were blocked by rapamycin, an inhibitor of the insulin signal transduction pathway in mammals, at the TOR (target of rapamycin) enzyme level. We conclude that ZmS6K is a kinase, structurally and functionally ortholog of the mammalian p70S6K, responsible for in vivo S6rp phosphorylation in maize. Its activation is induced by insulin in a TOR-dependent manner by phosphorylation on conserved serine/threonine residues.  相似文献   

13.
The alpha(1)-adrenergic agonist phenylephrine (PE) and insulin each stimulate protein synthesis in cardiomyocytes. Activation of protein synthesis by PE is involved in the development of cardiac hypertrophy. One component involved here is p70 S6 kinase 1 (S6K1), which lies downstream of mammalian target of rapamycin, whose regulation is thought to involve phosphatidylinositol 3-kinase and protein kinase B (PKB). S6K2 is a recently identified homolog of S6K1 whose regulation is poorly understood. Here we demonstrate that in adult rat ventricular cardiomyocytes, PE and insulin each activate S6K2, activation being 3.5- and 5-fold above basal, respectively. Rapamycin completely blocked S6K2 activation by either PE or insulin. Three different inhibitors of MEK1/2 abolished PE-induced activation of S6K2 whereas expression of constitutively active MEK1 activated S6K2, without affecting the p38 mitogen-activated protein kinase and JNK pathways, indicating that MEK/ERK signaling plays a key role in regulation of S6K2 by PE. PE did not activate PKB, and expression of dominant negative PKB failed to block activation of S6K2 by PE, indicating PE-induced S6K2 activation is independent of PKB. However, this PKB mutant did partially block S6K2 activation by insulin, indicating PKB is required here. Another hypertrophic agent, endothelin 1, also activated S6K2 in a MEK-dependent manner. Our findings provide strong evidence for novel signaling connections between MEK/ERK and S6K2.  相似文献   

14.
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 70 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.  相似文献   

15.
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.  相似文献   

16.
Zhou XW  Tanila H  Pei JJ 《FEBS letters》2008,582(2):159-164
This study set out to search for a link between overproduction of Abeta and p70S6 kinase (p70S6K) phosphorylation/activation. Results showed that levels of p-p70S6K at T421/S424 and T389 are significantly increased in mouse N2a neuroblastoma cells carrying human APP with Swedish mutation (APPswe), and in transgenic APPswe/PS1 (A246E) mice as compared with respective controls, corresponding to the increase of tau phosphorylation at S262. This parallel increase in p70S6K activation and tau phosphorylation could be demonstrated by treating wild-type N2a cells with Abeta25-35. Our results suggest that the Abeta deposition in senile plaques in Alzheimer disease brains might be a primary event that activates p70S6K and phosphorylates tau at S262, resulting in microtubule disruption.  相似文献   

17.
Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways.  相似文献   

18.
19.
While studying the stress regulation of p70/85 S6 kinase (S6K), we observed that anisomycin and UV light stimulated S6K activity, but that sorbitol inactivated S6K. Pretreatment with hyperosmotic stress also prevented the activation of S6K by both 12-O-tetradecanoylphorbol-13-acetate and anisomycin. Comparison of sorbitol and rapamycin revealed that both agents inactivated S6K and caused dephosphorylation of Ser/Thr-Pro sites in the COOH terminus of S6K, including Thr(412), a residue essential to S6K regulation, as determined by phospho-specific antibodies. Rapamycin-resistant S6K truncation mutants were similarly resistant to deactivation by sorbitol. Additionally, the PHAS-1 mobility shift, which is sensitive to rapamycin, was also found to be sensitive to osmotic stress. Experiments using the p38 inhibitor SB203580 and dominant negative mutants involving both stress-activated protein kinase/c-Jun NH(2)-terminal kinase and p38 stress pathways indicated that these pathways are probably not involved in osmotic stress inhibition of S6K. Examining the potential involvement of a phosphatase, we found that sodium pyrophosphate, sodium vanadate, cyclosporin A, tautomycin, and okadaic acid had no effect on osmotic stress inhibition of S6K. However, calyculin A prevented both rapamycin- and sorbitol-mediated deactivation of S6K. Our results suggest that osmotic stress and rapamycin act through a calyculin A-sensitive phosphatase to cause dephosphorylation and deactivation of S6K.  相似文献   

20.
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 80 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号