首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor α-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in α-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of α-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.  相似文献   

2.
A bacterial gene encoding α-acetolactate decarboxylase, isolated from Klebsiella terrigena or Enterobacter aerogenes, was expressed in brewer's yeast. The genes were expressed under either the yeast phosphoglycerokinase (PGK1) or the alcohol dehydrogenase (ADH1) promoter and were integrated by gene replacement by using cotransformation into the PGK1 or ADH1 locus, respectively, of a brewer's yeast. The expression level of the α-acetolactate decarboxylase gene of the PGK1 integrant strains was higher than that of the ADH1 integrants. Under pilot-scale brewing conditions, the α-acetolactate decarboxylase activity of the PGK1 integrant strains was sufficient to reduce the formation of diacetyl below the taste threshold value, and no lagering was needed. The brewing properties of the recombinant yeast strains were otherwise unaltered, and the quality (most importantly, the flavor) of the trial beers produced was as good as that of the control beer.  相似文献   

3.
The production of aroma compounds (acetoin and diacetyl) in fresh unripened cheese by Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 was studied at 30°C at different initial oxygen concentrations (0, 21, 50, and 100% of the medium saturation by oxygen). Regardless of the initial O2 concentration, maximal production of these compounds was reached only after all the citrate was consumed. Diacetyl and acetoin production was 0.01 and 2.4 mM, respectively, at 0% oxygen. Maximum acetoin concentration reached 5.4 mM at 100% oxygen. Diacetyl production was increased by factors of 2, 6, and 18 at initial oxygen concentrations of 21, 50, and 100%, respectively. The diacetyl/acetoin concentration ratio increased linearly with initial oxygen concentration: it was eight times higher at 100% (3.3%) than at 0% oxygen (0.4%). The effect of oxygen on diacetyl and acetoin production was also shown with other lactococci. At 0% oxygen, specific activity of α-acetolactate synthetase (0.15 U/mg) and NADH oxidase (0.04 U/mg) was 3.6 and 5.4 times lower, respectively, than at 100% oxygen. The increasing α-acetolactate synthetase activity in the presence of oxygen would explain the higher production of diacetyl and acetoin. The NADH oxidase activity would replace the role of the lactate dehydrogenase, diacetyl reductase, and acetoin reductase in the reoxidation of NADH, allowing accumulation of these two aroma compounds.  相似文献   

4.
The pyruvate metabolism of a Lactococcus lactis subsp. lactis biovar diacetylactis mutant deficient in α-acetolactate decarboxylase and its wild-type strain was studied during batch cultivations. A chemically defined medium was used containing glucose as carbon- and energy-source. The α-acetolactate decarboxylase deficiency had no effect on the specific growth rate. Addition of citrate was found to increase the specific growth rate of both strains under aerobic and anaerobic conditions. The product formation was monitored throughout the cultivations. The carbon- and redox-balances were within the accuracy of the experimental data. When citrate was added, α-acetolactate, diacetyl, and acetoin were formed, and aeration was shown to have a positive effect on the formation of these metabolites. By omitting lipoic acid (required for a functional pyruvate dehydrogenase complex) from the growth medium, a similar stimulatory effect on α-acetolactate, diacetyl, and acetoin formation was observed under aerobic conditions. The strain with impaired α-acetolactate decarboxylase activity accumulated α-acetolactate which resulted in an increased diacetyl formation compared to the wild-type strain, under aerobic and anaerobic conditions.  相似文献   

5.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

6.
7.
Lactococcus lactis subsp. lactis 425A is an atypical strain which excretes a high concentration of α-acetolactate when grown in milk. The conjugative lactococcal plasmid pNP40, which encodes phage and nisin resistance, was introduced to strain 425A by conjugation, using resistance to phage and nisin as a selection. No phage-nisin resistance mutants were encountered. Transconjugants display complete resistance at both 21 and 39°C to those phage previously identified as lytic for 425A. Transconjugants lose their resistance characteristics when spontaneously cured of pNP40. The commercially important property of 425A—production of high levels of α-acetolactic acid—is unaffected by the presence of pNP40.  相似文献   

8.
A reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase with the ability to reduce diacetyl has been isolated from Escherichia coli and has been purified 800-fold to near homogeneity. The product of the reduction of diacetyl was shown to be acetoin. The enzyme proved to catalyze the oxidation of NADPH in the presence of both uncharged α- and β-dicarbonyl compounds. Even monocarbonyl compounds showed slight activity with the enzyme. On the basis of its substrate specificity, it is suggested that the enzyme functions as a diacetyl reductase. In contrast to other diacetyl reductases, the one reported here is specific for NADPH and does not possess acetoin reductase activity. The pH optimum of this enzyme was found to be between 6 and 7. The maximal velocity for the NADPH-dependent reduction of diacetyl was determined to be 9.5 μmol per min per mg of protein and the Km values for diacetyl and NADPH were found to be 4.44 mM and 0.02 mM, respectively. The molecular weight was estimated by gel filtration on Sephadex G-100 to be approximately 10,000.  相似文献   

9.
Diacetyl (2,3-butanedione) is a key contributor to unpleasant odors emanating from the axillae, feet, and head regions. To investigate the mechanism of diacetyl generation on human skin, resident skin bacteria were tested for the ability to produce diacetyl via metabolism of the main organic acids contained in human sweat. l-Lactate metabolism by Staphylococcus aureus and Staphylococcus epidermidis produced the highest amounts of diacetyl, as measured by high-performance liquid chromatography. Glycyrrhiza glabra root extract (GGR) and α-tocopheryl-l-ascorbate-2-O-phosphate diester potassium salt (EPC-K1), a phosphate diester of α-tocopherol and ascorbic acid, effectively inhibited diacetyl formation without bactericidal effects. Moreover, a metabolic flux analysis revealed that GGR and EPC-K1 suppressed diacetyl formation by inhibiting extracellular bacterial conversion of l-lactate to pyruvate or by altering intracellular metabolic flow into the citrate cycle, respectively, highlighting fundamentally distinct mechanisms by GGR and EPC-K1 to suppress diacetyl formation. These results provide new insight into diacetyl metabolism by human skin bacteria and identify a regulatory mechanism of diacetyl formation that can facilitate the development of effective deodorant agents.  相似文献   

10.
1. The growth characteristics of nine micro-organisms on complex broth and defined media, usually with a single nitrogen source (other than vitamins), were examined as a necessary step before growth of cells for enzyme assays. Six of these bacteria gave a positive colour test with a creatine–potassium hydroxide reagent, indicating the presence of acetoin, which other investigators have shown is formed via the intermediate, α-acetolactate. 2. Cell-free extracts of exponential-phase cells of Bacillus subtilis, Staphylococcus aureus, Proteus morganii, Acetobacter rancens (two strains), A. kuetzingianus, A. acetosus, Acetomonas (Acetobacter) melanogenus and Acetomonas (Acetobacter) suboxydans (A.T.C.C. no. 621) were found to contain the enzyme, dihydroxy acid dehydratase (2,3-dihydroxy acid hydro-lyase). 3. The specific activity of the dehydratase from organisms grown on valine- and isoleucine-deficient media was greater than those grown on a complex broth or media containing complete amino acid mixtures. The omission of valine plus isoleucine from a medium containing 19 amino acids caused an increase in the dehydratase specific activity of Staphylococcus aureus and Proteus morganii. 4. The rate of keto acid formation from αβ-dihydroxyisovalerate by extracts of six of the above-named organisms was faster than, but somewhat proportional to, the similar rate from αβ-dihydroxy-β-methyl-n-valerate as substrate. 5. These findings may be related to acetolactate synthesis, acetoin formation and valine–isoleucine biosynthesis in the above-mentioned micro-organisms.  相似文献   

11.
Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm''s simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.  相似文献   

12.
Abstract Diacetyl formation was linear with time and with protein concentration when a cell-free extract of Leuconostoc lactis NCW1 was added to a buffer system containing pyruvate, thiamine pyrophosphate and MgS4 (final concentrations 60 mM, 0.11 mM and 0.22 mM, respectively). No diacetyl was detected in the absence of pyruvate or cell-free extract and no increase in diacetyl formation was detected on the addition of acetyl-CoA. When 2-acetolactate (1.6 mM) was the substrate, autodecarboxylation to diacetyl and acetoin occurred under aerobic and anaerobic conditions. When cell-free extract was added, decarboxylation of 2-acetolactate to acetoin and diacetyl increased 4–6-fold, under aerobic and anaerobic conditions. When the cell-free extract was boiled, diacetyl formation from 2-acetolactate was reduced to the level of autodecarboxylation. The results suggest that diacetyl is formed enzymatically in the presence and absence of oxygen, as well as spontaneously, from 2-acetolactate.  相似文献   

13.
13C nuclear magnetic resonance (13C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-13C]citrate, [3-13C]pyruvate, and [2-13C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. α-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the α-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

14.
NADH oxidase-overproducing Lactococcus lactis strains were constructed by cloning the Streptococcus mutans nox-2 gene, which encodes the H2O-forming NADH oxidase, on the plasmid vector pNZ8020 under the control of the L. lactis nisA promoter. This engineered system allowed a nisin-controlled 150-fold overproduction of NADH oxidase at pH 7.0, resulting in decreased NADH/NAD ratios under aerobic conditions. Deliberate variations on NADH oxidase activity provoked a shift from homolactic to mixed-acid fermentation during aerobic glucose catabolism. The magnitude of this shift was directly dependent on the level of NADH oxidase overproduced. At an initial growth pH of 6.0, smaller amounts of nisin were required to optimize NADH oxidase overproduction, but maximum NADH oxidase activity was twofold lower than that found at pH 7.0. Nonetheless at the highest induction levels, levels of pyruvate flux redistribution were almost identical at both initial pH values. Pyruvate was mostly converted to acetoin or diacetyl via α-acetolactate synthase instead of lactate and was not converted to acetate due to flux limitation through pyruvate dehydrogenase. The activity of the overproduced NADH oxidase could be increased with exogenously added flavin adenine dinucleotide. Under these conditions, lactate production was completely absent. Lactate dehydrogenase remained active under all conditions, indicating that the observed metabolic effects were only due to removal of the reduced cofactor. These results indicate that the observed shift from homolactic to mixed-acid fermentation under aerobic conditions is mainly modulated by the level of NADH oxidation resulting in low NADH/NAD+ ratios in the cells.  相似文献   

15.

Objectives

To convert α-acetolactate into acetoin by an α-acetolactate decarboxylase (ALDC) to prevent its conversion into diacetyl that gives beer an unfavourable buttery flavour.

Results

We constructed a whole Saccharomyces cerevisiae cell catalyst with a truncated active ALDC from Acetobacter aceti ssp xylinum attached to the cell wall using the C-terminal anchoring domain of α-agglutinin. ALDC variants in which 43 and 69 N-terminal residues were absent performed equally well and had significantly decreased amounts of diacetyl during fermentation. With these cells, the highest concentrations of diacetyl observed during fermentation were 30 % less than those in wort fermented with control yeasts displaying only the anchoring domain and, unlike the control, virtually no diacetyl was present in wort after 7 days of fermentation.

Conclusions

Since modification of yeasts with ALDC variants did not affect their fermentation performance, the display of α-acetolactate decarboxylase activity is an effective approach to decrease the formation of diacetyl during beer fermentation.
  相似文献   

16.
The metabolic fate of citrate and pyruvate in four strains of Lactococcus lactis subsp. lactis biovar diacetylactis has been studied by means of 13C nuclear magnetic resonance, using as a substrate either [3-13C]pyruvic acid or custom-synthesized citric acid that is 13C labeled either at carbons 2 and 4 or at carbon 3. The fermentations were carried out batchwise in modified M17 broth. For the actual conversions of the 13C-labeled substrates, cells at the end of their logarithmic growth phase were used to minimize the conversion to lactic acid. A mass balance of the main citric acid metabolites was obtained; the four strains produced from 50 to 70% (on a molar basis) lactic acid from either citrate or pyruvate. The remaining 50 to 30% was converted mainly to either α-acetolactic acid (for one strain) or acetoin (for the other three strains). One of the strains produced an exceptionally high concentration of the diacetyl precursor α-acetolactic acid. Another strain (SDC6) also produced α-acetolactic acid, but this was decarboxylated to acetoin at a high rate. The 13C nuclear magnetic resonance method confirmed that the biosynthesis of α-acetolactic acid occurs via condensation of pyruvate and “active” acetaldehyde. Diacetyl was not found as a direct metabolite of citrate or pyruvate metabolism.  相似文献   

17.
Gluconacetobacter europaeus, one of the microorganisms most commonly used for vinegar production, produces the unfavorable flavor compound acetoin. Since acetoin reduction is important for rice vinegar production, a genetic approach was attempted to reduce acetoin produced by G. europaeus KGMA0119 using specific gene knockout without introducing exogenous antibiotic resistance genes. A uracil-auxotrophic mutant with deletion of the orotate phosphoribosyltransferase gene (pyrE) was first isolated by positive selection using 5-fluoroorotic acid. The pyrE disruptant designated KGMA0704 (ΔpyrE) showed 5-fluoroorotic acid resistance. KGMA0704 and the pyrE gene were used for further gene disruption experiments as a host cell and a selectable marker, respectively. Targeted disruption of aldC or als, which encodes α-acetolactate decarboxylase or α-acetolactate synthase, was attempted in KGMA0704. The disruption of these genes was expected to result in a decrease in acetoin levels. A disruption vector harboring the pyrE marker within the targeted gene was constructed for double-crossover recombination. The cells of KGMA0704 were transformed with the exogenous DNA using electroporation, and genotypic analyses of the transformants revealed the unique occurrence of targeted aldC or als gene disruption. The aldC disruptant KGMA4004 and the als disruptant KGMA5315 were cultivated, and the amount of acetoin was monitored. The acetoin level in KGMA4004 culture was significantly reduced to 0.009% (wt/vol) compared with KGMA0119 (0.042% [wt/vol]), whereas that of KGMA5315 was not affected (0.037% [wt/vol]). This indicates that aldC disruption is critical for acetoin reduction. G. europaeus KGMA4004 has clear application potential in the production of rice vinegar with less unfavorable flavor.  相似文献   

18.
A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data.  相似文献   

19.
Abnormal α-synuclein aggregates are hallmarks of a number of neurodegenerative diseases. Alpha synuclein and β-synucleins are susceptible to post-translational modification as isoaspartate protein damage, which is regulated in vivo by the action of the repair enzyme protein L-isoaspartyl O-methyltransferase (PIMT). We aged in vitro native α-synuclein, the α-synuclein familial mutants A30P and A53T that give rise to Parkinsonian phenotypes, and β-synuclein, at physiological pH and temperature for a time course of up to 20 days. Resolution of native α-synuclein and β-synuclein by two dimensional techniques showed the accumulation of a number of post-translationally modified forms of both proteins. The levels of isoaspartate formed over the 20 day time course were quantified by exogenous methylation with PIMT using S-Adenosyl-L-[3H-methyl]methionine as a methyl donor, and liquid scintillation counting of liberated 3H-methanol. All α-synuclein proteins accumulated isoaspartate at ∼1% of molecules/day, ∼20 times faster than for β-synuclein. This disparity between rates of isoaspartate was confirmed by exogenous methylation of synucleins by PIMT, protein resolution by one-dimensional denaturing gel electrophoresis, and visualisation of 3H-methyl esters by autoradiography. Protein silver staining and autoradiography also revealed that α-synucleins accumulated stable oligomers that were resistant to denaturing conditions, and which also contained isoaspartate. Co-incubation of approximately equimolar β-synuclein with α-synuclein resulted in a significant reduction of isoaspartate formed in all α-synucleins after 20 days of ageing. Co-incubated α- and β-synucleins, or α, or β synucleins alone, were resolved by non-denaturing size exclusion chromatography and all formed oligomers of ∼57.5 kDa; consistent with tetramerization. Direct association of α-synuclein with β-synuclein in column fractions or from in vitro ageing co-incubations was demonstrated by their co-immunoprecipitation. These results provide an insight into the molecular differences between α- and β-synucleins during ageing, and highlight the susceptibility of α-synuclein to protein damage, and the potential protective role of β-synuclein.  相似文献   

20.
The epithelial sodium channel is a multimeric protein formed by three homologous subunits: α, β, and γ; each subunit contains only two transmembrane domains. The level of expression of each of the subunits is markedly different in various Na+ absorbing epithelia raising the possibility that channels with different subunit composition can function in vivo. We have examined the functional properties of channels formed by the association of α with β and of α with γ in the Xenopus oocyte expression system using two-microelectrode voltage clamp and patch-clamp techniques. We found that αβ channels differ from αγ channels in the following functional properties: (a) αβ channels expressed larger Na+ than Li+ currents (INa+/ILi+ 1.2) whereas αγ channels expressed smaller Na+ than Li+ currents (INa+/ILi+ 0.55); (b) the Michaelis Menten constants (K m) of activation of current by increasing concentrations of external Na+ and Li+ of αβ channels were larger (K m > 180 mM) than those of αγ channels (K m of 35 and 50 mM, respectively); (c) single channel conductances of αβ channels (5.1 pS for Na+ and 4.2 pS for Li+) were smaller than those of αγ channels (6.5 pS for Na+ and 10.8 pS for Li+); (d) the half-inhibition constant (K i) of amiloride was 20-fold larger for αβ channels than for αγ channels whereas the K i of guanidinium was equal for both αβ and αγ. To identify the domains in the channel subunits involved in amiloride binding, we constructed several chimeras that contained the amino terminus of the γ subunit and the carboxy terminus of the β subunit. A stretch of 15 amino acids, immediately before the second transmembrane domain of the β subunit, was identified as the domain conferring lower amiloride affinity to the αβ channels. We provide evidence for the existence of two distinct binding sites for the amiloride molecule: one for the guanidium moiety and another for the pyrazine ring. At least two subunits α with β or γ contribute to these binding sites. Finally, we show that the most likely stoichiometry of αβ and αγ channels is 1α:1β and 1α:1γ, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号