首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Isolated hepatocytes from rat liver in primary culture rapidly lost viability under hypoxic conditions. In the presence of glycine, L-alanine or L-serine loss of viability under hypoxic conditions was greatly retarded. Glycine and L-serine already showed significant protection from hypoxic injury at a concentration of 0.1 mM; at 10 mM, all three amino acids offered almost complete protection. Beside these standard amino acids, 1-aminocyclopropane-1-carboxylic acid (ACPC) and sarcosine significantly decreased hypoxic injury of the hepatocytes, although to a lesser extent. Other amino acids tested provided only slight protection or had no effect on hypoxic injury of the hepatocytes. In the presence of the protective amino acids neither the ATP content nor the lactate production of the hypoxic hepatocytes were significantly affected. The addition of glycine, L-alanine and L-serine led to marked membrane alterations (blebs). These alterations, however, occurred without loss of viability and were reversible upon reoxygenation after up to 4 h of hypoxia.Abbreviations LDH lactate dehydrogenase - ACPC 1-amino-cyclopropane-1-carboxylic acid - HEPES 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid  相似文献   

2.
Isolated perfused rat livers have been used for various studies, but detailed investigation into the structural integrity of hepatocytes of this system is lacking. In this study, isolated rat livers were perfused in vitro with oxygenated Krebs-Ringer bicarbonate buffer solution, for 2 minutes and 1, 2, 3, and 4 hour(s) at 37 degrees C, using a non-recirculating perfusion system. The perfused livers were processed for semithin section light microscopy, transmission electron microscopy, and scanning electron microscopy. Sectional areas of cell deaths were measured by a camera-tracing assembly from 1.5 microns thick Araldite sections stained with toluidine blue. Progressive nuclear and cytoplasmic changes, leading to cell death, occurred in the hepatocytes of the centrilobular zone, during the 2nd, 3rd, and 4th hour of the perfusion at a rate of 9.03% +/- 1.5%, 38.7% +/- 2.7%, and 55.1% +/- 5.9% (mean +/- standard deviation) of the total sectional areas respectively. Midzonal hepatocytes showed normal basophilic staining but exhibited loss of glycogen granules, loss of microvilli, development of aqueous vacuoles and formation of blebs. The fine structures of cell organelles, glycogen granules, microvilli and plasma membrane of the cells in the periportal zone were well preserved throughout the experimental period. For further quantitative, metabolic and functional studies using isolated rat liver perfused with Krebs-Ringer solution, it is evident from the present investigation that the periportal zone represents the functional region of the hepatic lobule. Whilst progressive changes, leading to cell death, occurred in the centrilobular zone.  相似文献   

3.
Summary The three-dimensional structure of endothelial cells in the hepatic sinusoids of the rat was studied by application of light- and electron microscopy on Golgi-impregnated specimens. A number of endothelial cells could thus be individually delineated throughout the hepatic lobules. The cytoplasm, showing heavy silver deposits, consists of two distinct areas, a thick and thin portion. The thick portion, issuing from the region of the perikaryon, branches and tapers toward the cell periphery. The thin portion, occupying the remainder of the cytoplasm, consists largely of highly fenestrated sieve plates. Some intralobular variation can be noted; the thick portion of the endothelial cells is well developed in the periportal zone, while the cells in the centrilobular zone are relatively rich in thin portions. In addition, the area of distribution of an individual endothelial cell is larger in the centrilobular sinusoids than in the periportal zone. Some endothelial cells also possess unique cytoplasmic processes projecting into the intercellular space between hepatocytes and connecting the sinusoidal walls of neighboring sinusoids. These processes may anchor the endothelial cells to the hepatic plates.  相似文献   

4.
Hypoxia, reactive oxygen, and cell injury   总被引:2,自引:0,他引:2  
Hypoxia usually decreases the formation of reactive oxygen species by oxidases and by autoxidation of components of cellular electron transfer pathways and of quinoid compounds such as menadione. In the case of menadione reactive oxygen species are liberated to a significant extent only at non-physiologically high oxygen partial pressures (PO2). At physiological and hypoxic PO2 values electron shuttling of menadione in the mitochondrial respiratory chain predominates. In contrast, lipid peroxidation induced by halogenated alkanes, such as carbon tetrachloride, in liver leads to an increase in the formation of reactive oxygen and thus in cell injury under hypoxic conditions. Reactive oxygen species may also be generated during reoxygenation of a previously hypoxic tissue. Based on experiments with isolated hepatocytes a three-zone-model of liver injury due to hypoxia and reoxygenation is presented; 1) a zone where the cells die by hypoxia; 2) a zone where the cells are destroyed upon reoxygenation, presumably mediated by an increase in the cellular ATP content; and 3) a zone where cell injury occurs upon reoxygenation, mediated by reactive oxygen species possibly liberated by xanthine oxidase.  相似文献   

5.
Liver hypoxia still represents an important cause of liver injury during shock and liver transplantation. We have investigated the protective effects of beta-alanine against hypoxic injury using isolated perfused rat livers and isolated rat hepatocyte suspensions. Perfusion with hypoxic Krebs-Henseleit buffer increased liver weight and caused a progressive release of lactate dehydrogenase (LDH) in the effluent perfusate. The addition of 5 mmol/l beta-alanine to the perfusion buffer completely prevented both weight increase and LDH leakage. These findings were confirmed by histological examinations showing that beta-alanine blocked the staining by trypan blue of either liver parenchymal and sinusoidal cells. Studies performed in isolated hepatocytes revealed that beta-alanine exerted its protective effects by interfering with Na+ accumulation induced by hypoxia. The addition of gamma-amino-butyric acid, which interfered with beta-alanine uptake by the hepatocytes or of Na+/H+ ionophore monensin, reverted beta-alanine protection in either hepatocyte suspensions or isolated perfused livers. We also observed that liver receiving beta-alanine were also protected against LDH leakage and weight increase caused by the perfusion with an hyposmotic (205 mosm) hypoxic buffer obtained by decreasing NaCl content from 118 to 60 mmol/l. This latter effect was not reverted by blocking K+ efflux from hepatocyte with BaCl(2) (1mmol/l). Altogether these results indicated that beta-alanine protected against hypoxic liver injury by preventing Na+ overload and by increasing liver resistance to osmotic stress consequent to the impairment of ion homeostasis during hypoxia.  相似文献   

6.
Summary A re-examination of goldfish liver was made through the use of SEM of fractured samples and TEM of ultrathin-sections and freeze-etch replicas. Several new hepatic fine structures described in the present study are morphologically similar to those reported previously in many higher vertebrates including mammals. Hepatic sinusoids of goldfish contain fenestrations which are arranged into sieve plates. Although the hepatic plates are made up of two layers of hepatocytes, the parenchymal cells of goldfish liver are morphologically similar to mammalian hepatocytes, particularly with respect to the sinusoidal surfaces which are studded with numerous microvilli. The intercellular surfaces of hepatocytes have both nexus and desmosomal junctions, similar to those found in various epithelial cells of higher vertebrates, as cell attachments and communication foci. Tight junctions are found mainly between the openings of the intracellular bile canaliculi and the intralobular bile ductules which are situated in the center of the bicellular hepatic plate.Supported in part by Grants # GM92 and ES07017  相似文献   

7.
The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.  相似文献   

8.
Mouse liver cell culture. I. Hepatocyte isolation   总被引:17,自引:0,他引:17  
A method for isolation of mouse liver cells by a two-step perfusion with calcium and magnesium-free Hanks' salt solution followed by a medium containing collagenase is described. Several variations of the commonly used procedure for rat liver cell isolation were quantitatively compared with respect to cell yield and viability. The optimal isolation technique involved perfusion through the hepatic portal vein and routinely produced an average of 2.3 x 10(6) viable liver cells/g body weight. Optimal perfusate collagenase concentration was found to be 100 U of enzyme activity per milliliter of perfusate. Light and electron microscopic evaluation of liver morphology after several steps of the isolation showed distinct morphologic changes in hepatocytes and other liver cells during perfusion. After perfusion with Hanks' calcium- and magnesium-free solution, many hepatocytes exhibited early reversible cell injury. These changes included vesiculation and slight swelling of the endoplasmic reticulum as well as mitochondrial matrix condensation. Subsequent to perfusion with collagenase, the majority of hepatocytes appeared connected to one another only by tight junctional complexes at the bile canaliculi. Multiple evaginations were seen on the outer membrane resembling microville and probably represented the remains of cell-to-cell interdigitations between hepatocytes and sinusoidal lining cells from the space of Disse. The cytoplasmic injury seen after Hanks' perfusion was reversed after collagenase perfusion. After mechanical dispersion, isolated mouse hepatocytes were spherical in shape and existed as individual cells; many (80 to 85%) were binucleated under hase contrast light microscopy. By electron microscopy, cells appeared morphologically similar in cytoplasmic constitution to that seen in intact nonaltered liver cells.  相似文献   

9.
The sensitivity of liver cells to anoxia is a major problem afflicting liver preservation and transplantation. Intermittent ischemia has been proposed to reduce reperfusion injury. The aim of the study was to assess oxygen free radical formation and cell injury during continuous or intermittent anoxia/reoxygenation in rat hepatocytes. Anion superoxide was measured by lucigenin-enhanced chemiluminescence and cell damage by LDH release and trypan blue uptake. During anoxia, superoxide generation dropped to background level in both groups; trypan blue uptake and LDH release, which increased progressively, were significantly greater in hepatocytes exposed to continuous compared to intermittent anoxia. During reoxygenation, a massive generation of superoxide anion formation, followed by a sharp increase in LDH release, was observed in both groups. However, both oxyradical generation and cell injury were significantly greater in cells exposed to continuous compared to intermittent anoxia. The data, showing that intermittent oxygen deprivation reduce liver cell injury and oxygen free radical formation determined by anoxia/reoxygenation, suggest a novel possible approach to the reduction of reperfusion injury.  相似文献   

10.
Hepatic sinusoid, the smallest vessel in the liver, plays important roles in hepatic microcirculation. Although the structure of the hepatic sinusoids affects diverse functions of the liver, little is known about morphological alterations in the sinusoids under pathological conditions. In this study, we show that the structure of hepatic sinusoids can be identified three-dimensionally in normal and carbon tetrachloride-injured mouse liver, using the absorption mode of synchrotron radiation micro-computed tomography. We observed that the hepatic sinusoidal structure on tomographic slice images was similar to that on histological images of normal and acutely injured mice. Moreover, centrilobular necrosis and structural alterations of the sinusoids in the necrotic region were detectable on tomographic slice and volume-rendered images of the acutely injured mice. Furthermore, quantitative analyses on 3D volume-rendered images of the injured sinusoid revealed decrease in the volume of the sinusoid and connectivity of the sinusoidal network. Our results suggest that the use of synchrotron radiation micro-computed tomography may improve our understanding of the pathogenesis of hepatic diseases by detecting the hepatic sinusoids and their alterations in three-dimensional structures of the damaged liver.  相似文献   

11.
Using low-light digitized video microscopy, the onset, progression, and reversibility of anoxic injury were assessed in single hepatocytes isolated from fasted rats. Cell-surface bleb formation occurred in three stages over 1-3 h after anoxia. Stage I was characterized by formation of numerous small blebs. In stage II, small blebs enlarged by coalescence and fusion to form a few large terminal blebs. Near the end of stage II, cells began to swell rapidly, ending with the apparent breakdown of one of the terminal blebs. Breakdown of the bleb membrane initiated stage III of injury and was coincident with a rapid increase of nonspecific permeability to organic cationic and anionic molecules. On reoxygenation, stages I and II were fully reversible, and plasma membrane blebs were resorbed completely within 6 min of reoxygenation without loss of viability. Stage III, however, was not reversible, and no morphological changes occurred on reoxygenation. The results indicate that onset of cell death owing to anoxia is a rapid event initiated by a sudden increase of nonspecific plasma membrane permeability caused by rupture of a terminal bleb. Anoxic injury is reversible until this event occurs.  相似文献   

12.
The fine structural characteristics and phagocytic properties of peroxidase-positive and peroxidase-negative cells in rat hepatic sinusoids were investigated. Cells with a positive peroxidase reaction in the endoplasmic reticulum and the nuclear envelope make up approximately 40% of cells in rat hepatic sinusoids and have abundant cytoplasm containing numerous granules and vacuoles, and occasional tubular, vermiform invaginations. After intravenous injection of colloidal carbon, the luminal plasma membrane of these cells shows continuous sticking of carbon, and there is evidence of avid phagocytosis of colloidal carbon particles. Peroxidase-positive cells are the only cells in hepatic sinusoids which phagocytize large (0.8 µ in diameter) latex particles. In contrast, the peroxidase-negative endothelial cells, which make up 48% of cells, have scanty perinuclear cytoplasm and organelles, and their long cytoplasmic extensions that form the lining of the hepatic sinusoids have fenestrations; these cells ingest small amounts of colloidal carbon, principally by micropinocytosis, exhibit no sticking of carbon particles to their plasma membranes, and do not ingest the larger (latex) particles. The so-called fat-storing cells are peroxidase negative and totally nonphagocytic. The peroxidase reaction thus distinguishes the typical mononuclear phagocytes or Kupffer cells of rat liver from the endothelial-lining cells.  相似文献   

13.
The aim of the present study was to investigate the possible role of reactive oxygen species in the pathogenesis of hypoxic damage in isolated perfused rat liver. One hour of hypoxia caused severe cell damage (lactate dehydrogenase release of greater than 12,000 mU/min/g liver wt) and total irreversible cholestasis which was accompanied by a loss of cellular ATP and a marked decrease in lactate efflux. Tissue glutathione disulfide (GSSG) content and GSSG efflux as a measure of hepatic reactive oxygen formation was less than 1% of total glutathione before and during hypoxia. Upon reoxygenation, however, hepatic GSSG content increased sharply to about twice the control values and GSSG efflux increased several-fold to around 3-4 nmol GSH-equivalents/min/g. The release of lactate dehydrogenase decreased upon reoxygenation and tissue ATP content recovered partially. When livers were reoxygenated at an earlier time interval than 1 hr of hypoxia, i.e., before the onset of damage, no enhanced GSSG formation was observed. The results demonstrate that hypoxic damage is a prerequisite to reactive oxygen formation during the subsequent reoxygenation period. Thus, reactive oxygen species appear unlikely to play a crucial role in the pathogenesis of hypoxic liver damage in the hemoglobin-free, isolated perfused liver model.  相似文献   

14.
S-adenosylmethionine (SAMe) has been shown to protect hepatocytes from toxic injury, both experimentally-induced in animals and in isolated hepatocytes. The mechanisms by which SAMe protects hepatocytes from injury can result from the pathways of SAMe metabolism. Unfortunately, data documenting the protective effect of SAMe against mitochondrial damage from toxic injury are not widely available. Thioacetamide is frequently used as a model hepatotoxin, which causes in vivo centrilobular necrosis. Even though thioacetamide-induced liver necrosis in rats was alleviated by SAMe, the mechanisms of this protective effect remain to be verified. The aim of our study was to determine the protective mechanisms of SAMe on thioacetamide-induced hepatocyte injury by using primary hepatocyte cultures. The release of lactate dehydrogenase (LDH) from cells incubated with thioacetamide for 24 hours, was lowered by simultaneous treatment with SAMe, in a dose-dependent manner. The inhibitory effect of SAMe on thioacetamide-induced lipid peroxidation paralleled the effect on cytotoxicity. A decrease in the mitochondrial membrane potential, as determined by Rhodamine 123 accumulation, was also prevented. The attenuation by SAMe of thioacetamide-induced glutathione depletion was determined after subsequent incubation periods of 48 and 72 hours. SAMe protects both cytoplasmic and mitochondrial membranes. This effect was more pronounced during the development of thioacetamide-induced hepatocyte injury that was mediated by lipid peroxidation. Continuation of the SAMe treatment then led to a reduction in glutathione depletion, as a potential consequence of an increase in glutathione production, for which SAMe is a precursor.  相似文献   

15.
Although it is well documented that neutrophils are critical for the delayed phase of hepatic ischemia-reperfusion injury, there is no direct evidence for a specific neutrophil-derived oxidant stress in vivo. Therefore, we used a model of 60 min of partial hepatic ischemia and 0-24 h of reperfusion to investigate neutrophil accumulation and to analyze biomarkers for a general oxidant stress [glutathione disulfide (GSSG) and malondialdehyde (MDA)] and for a neutrophil-specific oxidant stress [hypochlorite (HOCl)-modified epitopes] in rats. Plasma alanine transaminase activities and histology showed progressively increasing liver injury during reperfusion, when hepatic GSSG and soluble MDA levels were elevated. At that time, few neutrophils were present in sinusoids. However, the number of hepatocytes positively stained for HOCl-modified epitopes increased from 6 to 24 h of reperfusion, which correlated with the bulk of hepatic neutrophil accumulation and extravasation into the parenchyma. Consistent with a higher oxidant stress at later times, hepatic GSSG and protein-bound MDA levels further increased. Treatment with the NADPH oxidase inhibitor diphenyleneiodonium chloride attenuated postischemic oxidant stress (GSSG, protein-bound MDA, and hepatocytes positively stained for HOCl-modified epitopes) and liver injury at 24 h of reperfusion. Ischemic preconditioning suppressed all oxidant stress biomarkers, liver injury, and extravasation of neutrophils. In conclusion, extravasated neutrophils generate HOCl, which diffuses into hepatocytes and causes oxidative modifications of intracellular proteins during the neutrophil-mediated reperfusion injury phase. Ischemic preconditioning is an effective intervention for reduction of the overall inflammatory response and, in particular, for limitation of the cytotoxic activity of neutrophils during the later reperfusion period.  相似文献   

16.
P M Taylor  M J Rennie 《FEBS letters》1987,221(2):370-374
Periportal and perivenous hepatocytes differ in their metabolism of blood glutamate (Glu). Uncertainty about the mechanisms of Glu blood-liver exchange led us to characterise, by paired-tracer dilution, a sodium-dependent dicarboxylate transporter (resembling system X-ag) in sinusoidal membranes of perfused rat liver (Vmax = 0.18 mumol Glu/g per min, Km = 0.29 mM Glu). Tracer Glu transport was depressed 65% after necrosis of perivenous hepatocytes by acute CCl4 treatment, indicating that X-ag transporter activity is located mainly in these cells, the sites of glutamine (Gln) synthesis from glutamate and ammonia. Modulation of Glu transport may influence the extent of hepatic Gln release.  相似文献   

17.
A simplified model of hypoxic injury in primary cultured rat hepatocytes   总被引:2,自引:0,他引:2  
Summary The Anaeropack system for cell culture, which was originally designed for the growth of anaerobic bacteria, was used to produce a hypoxic atmosphere for cultured hepatocytes. We measured changes in the oxygen and carbon dioxide concentrations and the atmospheric temperature in an airtight jar. We also measured changes in the pH of the medium during hypoxia to assess the accuracy of this system. Moreover, we used three durations (2, 3, and 4 h) of hypoxia and 8 h of reoxygenation in cultured rat hepatocytes, and then measured the lactate dehydrogenase (LDH), ketone body concentration (acetoacetate + β-hydroxybutyrate), and the ketone body ratio (KBR: acetoacetate/β-hydroxybutyrate) in the medium in order to assess the suitability of this system as a model for reperfusion following liver ischemia. The oxygen concentration dropped to 1% or less within 1 h. The concentration of carbon dioxide rose to about 5% at 30 min after the induction of the hypoxic conditions, and was maintained at this level for 5 h. No effect of the reaction heat produced by the oxygen absorbent in the jar was recognized. The extent of cell injury produced by changing the hypoxic parameters was satisfactorily reflected by the KBR, the ketone body concentration, and the LDH activity released into the medium. Because this model can duplicate the conditions of the hepatocytes during revascularization following ischemic liver, and the Anaeropack system for cell culture is easy to manipulate, it seems suitable for the experimental study of hypoxic injury and revascularization in vitro.  相似文献   

18.
There have been many studies on the localization by immunocytochemistry of cytoskeletal proteins in cells cultured in vitro. However, the distribution of cytoskeleton in cells in situ has yet to be elucidated. In the present study we developed an immunohistochemical method for visualizing tubulin and actin in rat hepatocytes in situ, using a perfusion extraction-fixation procedure, in which the liver was perfused through the portal vein with a nonionic detergent to make the plasma membranes permeable to soluble substances, followed by a fixative to preserve cytoskeletal structure. Using the immunogold and peroxidase-antiperoxidase (PAP) staining procedures, we found that in hepatocytes in situ, tubulin was localized in cytoplasmic filamentous networks and in spindle fibers, as in hepatocytes and other cells in vitro. On the other hand, the distribution of actin in hepatocytes in situ was considerably different from that in well-spread hepatocytes and other cells cultured in vitro. In hepatocytes in situ, actin did not form any stress fibers, but was distributed preferentially under the plasma membrane, especially around the bile canaliculi. The perfusion extraction-fixation procedure could be adapted to visualize cytoskeleton in other tissues.  相似文献   

19.
利用切片方法观察了猞猁Felislynx肝脏的组织结构,应用免疫组织化学方法检测了表皮生长因子(EGF)在肝脏中的表达。结果显示,肝脏外被覆一层结缔组织薄膜,肝小叶不规则且分界不清,肝板、肝血窦及狄氏间隙围绕中央静脉呈放射状排列,肝板由一排肝细胞构成。肝细胞呈圆形或多边形,多为单核,少数具双核,肝细胞间比较松散。肝血窦发达,内可见血细胞。EGF阳性反应主要定位于肝细胞质中,表明EGF可能参与细胞新陈代谢过程的调控。  相似文献   

20.
High-level hepatitis B virus replication in transgenic mice.   总被引:25,自引:0,他引:25       下载免费PDF全文
Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号