首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67?km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.  相似文献   

2.
Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species’ range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and significant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale ( <10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining ‘connected’8 brush-tailed rock-wallaby colonies in the northern parts of the species’8 range and the remnant endangered populations in the south.  相似文献   

3.

Understanding the demographic consequences of habitat loss on populations is essential for the conservation of threatened species. The threatened swamp skink (Lissolepis coventryi) is restricted to fragmented wetland habitats in Victoria and southeast South Australia. It has experienced significant habitat loss in the last 150 years, particularly around the Melbourne metropolitan area, where several small and isolated populations remain. Using mtDNA and nuDNA SNPs, we examined distribution patterns and population structure to infer evolutionary history and genetic distinctiveness of populations throughout the species’ range. For populations in the Melbourne metropolitan area, we examined genetic diversity. We found the species to be highly divergent, separating into two distinct lineages to the east and west of Melbourne, likely due to geological and climate influences causing isolation of populations. Species’ detectability was low, particularly in the far east despite relatively intact habitat and presumed higher abundance. Melbourne populations showed signs of limited genetic diversity. We suggest that translocations to promote gene diversity amongst these populations, together with habitat restoration and protection, present an important management strategy for L. coventryi.

  相似文献   

4.

Revealing patterns of genetic diversity and barriers for gene flow are key points for successful conservation in endangered species. Methods based on molecular markers are also often used to delineate conservation units such as evolutionary significant units and management units. Here we combine phylo-geographic analyses (based on mtDNA) with population and landscape genetic analyses (based on microsatellites) for the endangered yellow-bellied toad Bombina variegata over a wide distribution range in Germany. Our analyses show that two genetic clusters are present in the study area, a northern and a southern/central one, but that these clusters are not deeply divergent. The genetic data suggest high fragmentation among toad occurrences and consequently low genetic diversity. Genetic diversity and genetic connectivity showed a negative relationship with road densities and urban areas surrounding toad occurrences, indicating that these landscape features act as barriers to gene flow. To preserve a maximum of genetic diversity, we recommend considering both genetic clusters as management units, and to increase gene flow among toad occurrences with the aim of restoring and protecting functional meta-populations within each of the clusters. Several isolated populations with especially low genetic diversity and signs of inbreeding need particular short-term conservation attention to avoid extinction. We also recommend to allow natural gene flow between both clusters but not to use individuals from one cluster for translocation or reintroduction into the other. Our results underscore the utility of molecular tools for species conservation, highlight outcomes of habitat fragmentation onto the genetic structure of an endangered amphibian and reveal particularly threatened populations in need for urgent conservation efforts.

  相似文献   

5.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

6.
ABSTRACT

Powelliphanta is a genus of large carnivorous land snails endemic to New Zealand which display phenotypic variation within comparatively small geographic distances. The diversity within these snails has become a matter of high interest to conservation, as many lineages occupy small (or highly fragmented) ranges that render them vulnerable to ongoing habitat loss and predation by exotic pests. Combining Powelliphanta mitochondrial sequence data and genotypes of microsatellite loci we document the genetic structure within a species complex dubbed ‘Kawatiri’. All populations (with one exception) within the Kawatiri lineage are restricted to subalpine habitat (at elevations over 600?m above sea level). The ranges of some Kawatiri complex populations are adjacent to the congeneric lowland species Powelliphanta lignaria. Improved understanding of the distribution of this complex and the level and structure of genetic diversity provided a picture of a naturally fragmented lineage, restricted to a particular ecological zone. We identified six genetic clusters associated with population connectivity orientated north–south along mountain ranges, with east–west divisions between ranges. Future management should aim to retain the evolutionary potential within this young radiation by actively conserving the variation encompassed by each of the six clusters identified here.  相似文献   

7.
Increasingly, conservationists are seeking insights from ecological theory to choose strategies of habitat management that will best maintain threatened species. Often, these questions revolve around ways of mitigating the dangers posed by habitat fragmentation. Problems involving the scale of both animal movement and spatial heterogeneity inexorably arise when assessing the effects of fragmentation. We present results from a simple spatial model that simulates the dispersal of animals in a landscape of stochastically clustered habitat fragments. Varying the number of clusters and the spatial scale at which clustering occurs illustrates that heterogeneity has different and conflicting effects on animal movement when it occurs at different scales. Indeed, the scale of clustering is the most important feature in determining disperser performance in our model. Seeking to compare our modeling results with actual data, we review empirical studies of fragmented populations and habitats. Surprisingly, we conclude that very few studies have addressed the mechanisms by which fragmentation will influence population dynamics or, in particular, the ways in which spatial scale mediate these effects. We conclude that the explicit consideration of scale is essential in discussions of habitat fragmentation and of optimal conservation strategies.  相似文献   

8.
Assessing patterns of genetic structure and diversity of threatened species has become an essential tool for determining conservation status and designing management strategies. We examine the genetic structure of the Sierra Madre sparrow (Xenospiza baileyi), a species restricted to fragmented patches of subalpine bunchgrass in three small isolated areas of northwestern and central Mexico. Coding and non-coding regions of mtDNA (1,878 bp) from individuals of the only three known populations revealed the existence of a single major lineage, with closely related haplotypes being shared between populations across the range. The sharing of haplotypes between the distant northwest and central populations (~800 km) suggests a recent fragmentation of a formerly contiguous population. Despite a lack of large-scale phylogeographic structure, haplotype frequencies at local scales revealed significant genetic differentiation and high F ST values between all three remaining populations, even between localities separated by less than 12 km. These results suggest restricted gene flow and limited dispersal, likely due to the species’ inability to cross areas of unsuitable habitat. On the basis of genetic interchange and ecological equivalence criteria, we recommend that the species be managed as a single unit, permitting the strengthening of the small population in the northwest with individuals from central Mexico, and/or the translocation of individuals to new areas of suitable habitat.  相似文献   

9.
The aim of this study was to assess the genetic variation and population structure of the geophyte Leucojum aestivum L. across the Po river valley (N-Italy), to inform conservation management actions with the selection of most suitable source populations for translocation purposes. L. aestivum is self-incompatible and occurs in S-Europe in fragmented wetlands and lowland forests along rivers. The species is particularly interesting for habitat restoration practices for its simplicity of ex situ conservation and cultivation. AFLP analyses were carried out on 16 fragmented populations, using four primer combinations. Correlations between genetic variation and demographic and ecological traits were tested. AFLP produced a total of 202 bands, 95.5% of which were polymorphic. Our results suggest that L. aestivum holds low to moderate levels of genetic diversity (mean Nei’s genetic diversity: H?=?0.125), mostly within-population. We found a gradient of two main biogeographic groups along western and eastern populations, while the STRUCTURE analysis found that the most likely number of clusters was K?=?3, shaping a partially consistent pattern. We explain the unusual negative correlation between genetic variation and population size with the high rate of vegetative reproduction. The levels of population differentiation suggest that fragmentation in L. aestivum populations has occurred, but that an active gene flow between fragmented populations still exists, maintained by flooding events or pollinators. Conservation management actions should improve habitat connectivity, especially for pollinators that vehicle upstream gene flow. Moreover, the west–east structure due to the lithological composition of the gravel and sand forming the alluvial plain of the Po river, should be considered when selecting source populations for translocation purposes.  相似文献   

10.
Many species living in man-shaped landscapes are restricted to small natural habitat patches and form metapopulations; predicting their future is a central issue in applied ecology. We examined the viability of the bog fritillary butterfly Proclossiana eunomia Esper, a specialist glacial relict species, in a highly fragmented landscape (<1% of suitable habitat in 10 km2), by way of population viability analysis. We used comprehensive data from a long-term study in which a patchy population was monitored during ten consecutive years to parameterise a spatially structured metapopulation model using commercially available platform RAMAS/GIS 3.0. Population growth rate was density-dependent and modulated by various climatic variables acting on different developmental stages of the butterfly. Density dependence was probably related to larval parasitism by a specific parasitoid. Population size was negatively affected by an increase in the mean temperature. Dispersal was modelled as the observed proportion of movements between patches, taking into account the probability of emigration out of a given patch. Our model provided results close to the picture of the system drawn from the field data and was considered as useful in making predictions about the metapopulation. Demographic parameters proved to have a far higher impact on metapopulation persistence than dispersal or correlation of local dynamics. Scenarios simulating both global warming and management of habitat patches by rustic herbivore grazing indicated a decrease in the viability of the metapopulation. Our results prompted the regional nature conservation agency to modify the planned management regime. We urge conservation biologists to use structured population models including local population dynamics for viability analysis targeted to such threatened metapopulations in highly fragmented landscapes.  相似文献   

11.
Moving animals on a landscape through translocations and reintroductions is an important management tool used in the recovery of endangered species, particularly for the maintenance of population genetic diversity and structure. Management of imperiled amphibian species rely heavily on translocations and reintroductions, especially for species that have been brought to the brink of extinction by habitat loss, introduced species, and disease. One striking example of amphibian declines and associated management efforts is in California's Sequoia and Kings Canyon National Parks with the mountain yellow‐legged frog species complex (Rana sierrae/muscosa). Mountain yellow‐legged frogs have been extirpated from more than 93% of their historic range, and limited knowledge of their population genetics has made long‐term conservation planning difficult. To address this, we used 598 archived skin swabs from both extant and extirpated populations across 48 lake basins to generate a robust Illumina‐based nuclear amplicon data set. We found that samples grouped into three main genetic clusters, concordant with watershed boundaries. We also found evidence for historical gene flow across watershed boundaries with a north‐to‐south axis of migration. Finally, our results indicate that genetic diversity is not significantly different between populations with different disease histories. Our study offers specific management recommendations for imperiled mountain yellow‐legged frogs and, more broadly, provides a population genetic framework for leveraging minimally invasive samples for the conservation of threatened species.  相似文献   

12.
Many animal populations continue to decline despite occurring in protected areas or on sympathetically managed sites. Frequently, this is because a specific habitat patch may not fulfil all the niche requirements of a threatened species. For instance, species often move between, and make use of, multiple habitat types for breeding, roosting and feeding within the same landscape. These cross‐habitat interactions present a challenge for conservation. Here we quantify how the habitat associations of individual species and assemblages occurring within two distinct but adjacent habitat types (moorland and farmland) determine a suite of density and richness indicators, using the bird community of the English uplands as a case study. There was a clear association between onsite avian density and richness and offsite habitat structure (e.g. vegetation height, percent cover of dominant plant species, land management practices). Although such effects are not universal across all species and assemblages, where present (for five farmland and three moorland indicators) the increase in explanatory power offered by including offsite habitat structure can be large. By constructing scenarios of possible changes to management practice on both moorland and farmland, we demonstrate a real conservation benefit can be obtained by altering management in offsite habitats. For example, reducing burning intensity on moorland can result in a five‐fold increase in snipe Gallinago gallinago density on farmland, without an alteration in farmland habitat. For one species (Eurasian curlew Numenius arquata), we demonstrate the frequency with which birds move between and utilise farmland and moorland during the breeding season, and therefore the importance of both habitat types to maintaining population densities. The multiple habitat dependency phenomenon quantified here is common and not restricted to birds. The successful conservation of many threatened species will thus depend on coordinated cross‐habitat management.  相似文献   

13.
Conservation geneticists make inferences about their focal species from genetic data, and then use these inferences to inform conservation decisions. Since different biological processes can produce similar patterns of genetic diversity, we advocate an approach to data analysis that considers the full range of evolutionary forces and attempts to evaluate their relative contributions in an objective manner. Here we collect data from microsatellites and chloroplast loci and use these data to explore models of historical demography in the carnivorous Pitcher Plant, Sarracenia alata. Findings indicate that populations of S. alata exhibit high degrees of population genetic structure, likely caused by dispersal limitation, and that population sizes have decreased in western populations and increased in eastern populations. These results provide new insight to the management and conservation of plants restricted to small, declining populations isolated in increasingly scarce and highly threatened habitat, including other rare and endangered species of Sarracenia.  相似文献   

14.
1.  Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness.
2.  A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation.
3.  We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation.
4.  We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations.
5.   Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.  相似文献   

15.
Understanding patterns of genetic structure is fundamental for developing successful management programmes for isolated populations of threatened species. Trochulus caelatus is a small terrestrial snail endemic to calcareous rock cliffs in the Northwestern Swiss Jura Mountains. Eight microsatellite loci were used to assess the effect of habitat isolation on genetic population structure and gene flow among nine populations occurring on distinct cliffs. We found a high genetic differentiation among populations (mean F ST = 0.254) indicating that the populations are strongly isolated. Both allelic richness and effective population size were positively correlated with the size of the cliffs. Our findings support the hypothesis that T. caelatus survived on ice-free cliffs during the Pleistocene glacier advancements from the Alps. Due to the establishment of beech and pine forest under recent, temperate climate conditions, dispersal between cliffs is no longer possible for rock-dwelling snails such as T. caelatus. Our results provide basic data for developing a conservation action plan for this endangered gastropod species.  相似文献   

16.
For conservation managers tasked with recovering threatened species, genetic structure can exacerbate the rate of loss of genetic diversity because alleles unique to a sub-population are more likely to be lost by the effects of random genetic drift than if a population is panmictic. Given that intensive management techniques commonly used to recover threatened species frequently involve movement of individuals within and between populations, managers need to be aware not only of pre-existing levels of genetic structure but also of the potential effects that intensive management might have on these patterns. The Mauritius parakeet (Psittacula echo) has been the subject of an intensive conservation programme, involving translocation and reintroduction that has recovered the population from less than 20 individuals in 1987 to approximately 500 in 2010. Analysis of genotype data derived from 18 microsatellite markers developed for this species reveals a clear signal of structure in the population before intensive management began, but which subsequently disappears following management intervention. This study illustrates the impacts that conservation management can have on the genetic structure of an island endemic population and demonstrates how translocations or reintroductions can benefit populations of endangered species by reducing the risk of loss of genetic diversity.  相似文献   

17.
Freshwater fish are a group that is especially susceptible to biodiversity loss as they often exist naturally in small, fragmented populations that are vulnerable to habitat degradation, pollution and introduction of exotic species. Relatively little is known about spatial dynamics of unperturbed populations of small-bodied freshwater fish species. This study examined population genetic structure of the purple spotted gudgeon (Mogurnda adspersa, Eleotridae), a small-bodied freshwater fish that is widely distributed in eastern Australia. The species is threatened in parts of its range but is common in coastal streams of central Queensland where this study took place. Microsatellite (msat) and mitochondrial DNA (mtDNA) variation was assessed for nine sites from four stream sections in two drainage basins. Very high levels of among population structure were observed (msat F(ST) = 0.18; mtDNA Φ(ST) = 0.85) and evidence for contemporary migration among populations was rare and limited to sites within the same section of stream. Hierarchical structuring of variation was best explained by stream section rather than by drainage basin. Estimates of contemporary effective population size for each site was low (range 28 - 63, Sibship method), but compared favorably with similar estimates for other freshwater fish species, and there was no genetic evidence for inbreeding or recent population bottlenecks. In conclusion, within a stable part of its range, M adspersa exists as a series of small, demographically stable populations that are highly isolated from one another. Complimentary patterns in microsatellites and mtDNA indicate this structuring is the result of long-term processes that have developed over a remarkably small spatial scale. High population structure and limited dispersal mean that recolonisation of locally extinct populations is only likely to occur from closely situated populations within stream sections. Limited potential for recolonisation should be considered as an important factor in conservation and management of this species.  相似文献   

18.
Habitat fragmentation is an increasing threat to wildlife species across the globe and it has been predicted that future biodiversity will decrease rapidly without the intervention of scientifically-based management. In this study we have applied a landscape genetics approach to suggest a network design that will maintain connectivity among populations of the endangered mountain Nyala (Tragelaphus buxtoni) in the fragmented highlands of Ethiopia. DNA was obtained non-invasively from 328 individuals and genetic population structure and gene flow were estimated using 12 microsatellite markers. In addition, a 475-bp segment of the mitochondrial control region was sequenced for 132 individuals. Potential dispersal corridors were determined from least-cost path analysis based on a habitat suitability map. The genetic data indicated limited gene flow between the sampled mountain Nyala populations of the Bale Massif and the Arsi Massif. The genetic differentiation observed among five sampling areas of the Bale Massif followed a pattern of isolation by distance. We detected no impact of habitat resistance on the gene flow. In the future, however, the current expanding human population in the highlands of Ethiopia may reduce the current mountain Nyala habitat and further limit migration. Hence, maintaining habitat connectivity and facilitating survival of stepping-stone populations will be important for the future conservation of the species. The approach used here may also be useful for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment.  相似文献   

19.
Fragmented landscapes resulting from anthropogenic habitat modification can have significant impacts on dispersal, gene flow, and persistence of wildlife populations. Therefore, quantifying population connectivity across a mosaic of habitats in highly modified landscapes is critical for the development of conservation management plans for threatened populations. Endangered populations of the eastern tiger salamander (Ambystoma tigrinum) in New York and New Jersey are at the northern edge of the species’ range and remaining populations persist in highly developed landscapes in both states. We used landscape genetic approaches to examine regional genetic population structure and potential barriers to migration among remaining populations. Despite the post-glacial demographic processes that have shaped genetic diversity in tiger salamander populations at the northern extent of their range, we found that populations in each state belong to distinct genetic clusters, consistent with the large geographic distance that separates them. We detected overall low genetic diversity and high relatedness within populations, likely due to recent range expansion, isolation, and relatively small population sizes. Nonetheless, landscape connectivity analyses reveal habitat corridors among remaining breeding ponds. Furthermore, molecular estimates of population connectivity among ponds indicate that gene flow still occurs at regional scales. Further fragmentation of remaining habitat will potentially restrict dispersal among breeding ponds, cause the erosion of genetic diversity, and exacerbate already high levels of inbreeding. We recommend the continued management and maintenance of habitat corridors to ensure long-term viability of these endangered populations.  相似文献   

20.
Habitat loss is the main threat to biodiversity conservation worldwide. Some species may be particularly susceptible to the effects of fragmentation and the isolation of populations. The impacts of human activity on wild animal populations may be understood through relationships between individual genetic data and spatial landscape variables, particularly when considering local population dynamics influenced by fragmented habitats. Thus, the objective of this study was to analyze the population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla) using an individual sampling scheme (ISS) on a regional geographic scale. Data were collected from 41 specimens from twenty different locations in São Paulo State, Brazil, and six polymorphic microsatellite loci were genotyped. Our results indicate that barriers to gene flow exist and have segregated individuals of the farther away areas into two spatially structured clusters. The populations were also found to have high genetic diversity. The experimental sampling approach used herein enabled an analysis of the population dynamics of the giant anteater on a regional scale, as well as the identification of priority populations for genetic resource conservation for this species. The results reflect the need for adequate management plans. The efficacy of the sampling scheme may vary based on the study model used, but we argue that the use of an ISS combined with suitable molecular markers and statistical methods may serve as an important tool for initial analyses of threatened or vulnerable species, particularly in anthropized regions where populations are small or hard to characterize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号