首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jezewska MJ  Bujalowski W 《Biochemistry》2000,39(34):10454-10467
Quantitative analyses of the interactions of the Escherichia coli replicative helicase PriA protein with a single-stranded DNA have been performed, using the thermodynamically rigorous fluorescence titration technique. The analysis of the PriA helicase interactions with nonfluorescent, unmodified nucleic acids has been performed, using the macromolecular competition titration (MCT) method. Thermodynamic studies of the PriA helicase binding to ssDNA oligomers, as well as competition studies, show that independently of the type of nucleic acid base, as well as the salt concentration, the type of salt in solution, and nucleotide cofactors, the PriA helicase binds the ssDNA as a monomer. The enzyme binds the ssDNA with significant affinity in the absence of any nucleotide cofactors. Moreover, the presence of AMP-PNP diminishes the intrinsic affinity of the PriA protein for the ssDNA by a factor approximately 4, while ADP has no detectable effect. Analyses of the PriA interactions with different ssDNA oligomers, over a large range of nucleic acid concentrations, indicates that the enzyme has a single, strong ssDNA-binding site. The intrinsic affinities are salt-dependent. The formation of the helicase-ssDNA complexes is accompanied by a net release of 3-4 ions. The experiments have been performed with ssDNA oligomers encompassing the total site size of the helicase-ssDNA complex and with oligomers long enough to encompass only the ssDNA-binding site of the enzyme. The obtained results indicate that salt dependence of the intrinsic affinity results predominantly, if not exclusively, from the interactions of the ssDNA-binding site of the helicase with the nucleic acid. There is an anion effect on the studied interactions, which suggests that released ions originate from both the protein and the nucleic acid. Contrary to the intrinsic affinities, cooperative interactions between bound PriA molecules are accompanied by a net uptake of approximately 3 ions. The PriA protein shows preferential intrinsic affinity for pyrimidine ssDNA oligomers. In our standard conditions (pH 7.0, 10 degrees C, 100 mM NaCl), the intrinsic binding constant for the pyrimidine oligomers is approximately 1 order of magnitude higher than the intrinsic binding constant for the purine oligomers. The significance of these results for the mechanism of action of the PriA helicase is discussed.  相似文献   

2.
PriB is a basic 10-kDa protein that acts as a facilitator in PriA-dependent replication restart in Escherichia coli. PriB has an OB-fold dimer structure and exhibits single-stranded DNA (ssDNA)-binding activities similar to single-stranded binding protein (SSB). In this study, we examined PriB's interaction with ssDNA (oligo-dT35, -dT15, and -dT7) using heteronuclear NMR analysis. Interestingly, 1H or 15N chemical shift changes of the PriB main-chain showed two distinct modes using oligo-dT35. The chemical shift perturbation sites in the primary mode were consistent with the main contact site in PriB–ssDNA, which was previously determined by crystal structure analysis. The results also suggested that approximately 8 nt in ssDNA was the main contact site to PriB. In the secondary mode, residues in the α-helix region (His57–Ser65) and in β4–loop3–β5 were mainly perturbed. On the other hand, we examined the state of ssDNA by FRET using 5′-Cy3- and 3′-Cy5-modified oligo-dT35. As the PriB concentration increased, two-step saturation curves were observed in the FRET assay, suggesting a compact structure of ssDNA. Moreover, we confirmed two-step PriB binding to oligo-dT35 using EMSA. The pH dependence of FRET suggested contribution of the His residues. Therefore, we prepared His mutants of PriB and found that His64 in the α-helix region contributed to the second interaction between PriB and ssDNA using FRET and EMSA. Thus, from a structural standpoint, we suggested the role of His64 on the compactness of the PriB–ssDNA complex and on the positive cooperativity of PriB.  相似文献   

3.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

4.
The PriA protein of Escherichia coli plays a key role in the rescue of replication forks stalled on the template DNA. One attractive model of rescue relies on homologous recombination to establish a new fork via PriA-mediated loading of the DnaB replicative helicase at D loop intermediates. We provide genetic and biochemical evidence that PriA helicase activity can also rescue a stalled fork by an alternative mechanism that requires manipulation of the fork before loading of DnaB on the lagging strand template. This direct rescue depends on RecG, which unwinds forks and Holliday junctions and interconverts these structures. The combined action of PriA and RecG helicase activities may thus avoid the potential dangers of rescue pathways involving fork breakage and recombination.  相似文献   

5.
Helicases are molecular motors that unwind double-stranded DNA or RNA. In addition to unwinding nucleic acids, an important function of these enzymes seems to be the disruption of protein-nucleic acid interactions. Bacteriophage T4 Dda helicase can displace proteins bound to DNA, including streptavidin bound to biotinylated oligonucleotides. We investigated the mechanism of streptavidin displacement by varying the length of the oligonucleotide substrate. We found that a monomeric form of Dda catalyzed streptavidin displacement; however, the activity increased when multiple helicase molecules bound to the biotinylated oligonucleotide. The activity does not result from cooperative binding of Dda to the oligonucleotide. Rather, the increase in activity is a consequence of the directional bias in translocation of individual helicase monomers. Such a bias leads to protein-protein interactions when the lead monomer stalls owing to the presence of the streptavidin block.  相似文献   

6.
Helicases utilize the energy of ATP hydrolysis to unwind double-stranded DNA while translocating on the DNA. Mechanisms for melting the duplex have been characterized as active or passive, depending on whether the enzyme actively separates the base pairs or simply sequesters single-stranded DNA (ssDNA) that forms due to thermal fraying. Here, we show that Dda translocates unidirectionally on ssDNA at the same rate at which it unwinds double-stranded DNA in both ensemble and single-molecule experiments. Further, the unwinding rate is largely insensitive to the duplex stability and to the applied force. Thus, Dda transduces all of its translocase activity into DNA unwinding activity so that the rate of unwinding is limited by the rate of translocation and that the enzyme actively separates the duplex. Active and passive helicases have been characterized by dividing the velocity of DNA unwinding in base pairs per second (Vun) by the velocity of translocation on ssDNA in nucleotides per second (Vtrans). If the resulting fraction is 0.25, then a helicase is considered to be at the lower end of the “active” range. In the case of Dda, the average DNA unwinding velocity was 257 ± 42 bp/s, and the average translocation velocity was 267 ± 15 nt/s. The Vun/Vtrans value of 0.96 places Dda in a unique category of being an essentially “perfectly” active helicase.  相似文献   

7.
A model is proposed for non-hexameric helicases translocating along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA. The translocation of a monomeric helicase along ssDNA in weakly-ssDNA-bound state is driven by the Stokes force that is resulted from the conformational change following the transition of the nucleotide state. The unwinding of dsDNA is resulted mainly from the bending of ssDNA induced by the strong binding force of helicase with dsDNA. The interaction force between ssDNA and helicases in weakly-ssDNA-bound state determines whether monomeric helicases such as PcrA can unwind dsDNA or dimeric helicases such as Rep are required to unwind dsDNA.  相似文献   

8.
The ring-shaped helicases represent one important group of helicases that can translocate along single-stranded (ss) DNA and unwinding double-stranded (ds) DNA by using the energy derived from NTP binding and hydrolysis. Despite intensive studies, the mechanism by which the ring-shaped helicase translocates along ssDNA and unwinds dsDNA remains undetermined. In order to understand their chemomechanical-coupling mechanism, two models on NTPase activities of the hexamers in the presence of DNA have been studied here. One model is assumed that, of the six nucleotide-binding sites, three are noncatalytic and three are catalytic. The other model is assumed that all the six nucleotide-binding sites are catalytic. In terms of the sequential NTPase activity around the ring and the previous determined crystal structure of bacteriophage T7 helicase it is shown that the obtained mechanical behaviors such as the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle using the former model are in good quantitative agreement with the previous experimental results for T7 helicase. Moreover, the acceleration of DNA unwinding rate with the stimulation of DNA synthesis by DNA polymerase can also be well explained by using the former model. In contrast, the ssDNA-translocation size and DNA-unwinding size per dTTPase cycle obtained by using the latter model are not consistent with the experimental results for T7 helicase. Thus it is preferred that the former model is the appropriate one for the T7 helicase. Furthermore, using the former model some dynamic behaviors such as the rotational speeds of DNA relative to the T7 helicase when translocation along ssDNA and when unwinding dsDNA have been predicted, which are expected to test in order to further verify the model.  相似文献   

9.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

10.
11.
Rad B  Kowalczykowski SC 《Biochemistry》2012,51(13):2921-2929
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, the steady-state ATP hydrolysis activity of RecQ was analyzed. We find that the rate of ATP hydrolysis increases with DNA length, reaching a maximum specific activity of 38 ± 2 ATP/RecQ/s. Analysis of the rate of ATP hydrolysis as a function of DNA length implies that the helicase has a processivity of 19 ± 6 nucleotides on ssDNA and that RecQ requires a minimal translocation site size of 10 ± 1 nucleotides. Using the T4 phage encoded gene 32 protein (G32P), which binds ssDNA cooperatively, to decrease the lengths of ssDNA gaps available for translocation, we observe a decrease in the rate of ATP hydrolysis activity that is related to lattice occupancy. Analysis of the activity in terms of the average gap sizes available to RecQ on the ssDNA coated with G32P indicates that RecQ translocates on ssDNA on average 46 ± 11 nucleotides before dissociating. Moreover, when bound to ssDNA, RecQ hydrolyzes ATP in a cooperative fashion, with a Hill coefficient of 2.1 ± 0.6, suggesting that at least a dimer is required for translocation on ssDNA. We present a kinetic model for translocation by RecQ on ssDNA based on this characterization.  相似文献   

12.
13.
Werner syndrome is a hereditary premature aging disorder characterized by genomic instability. Genetic analysis and protein interaction studies indicate that the defective gene product (WRN) may play an important role in DNA replication, recombination, and repair. DNA polymerase beta (pol beta) is a central participant in both short and long-patch base excision repair (BER) pathways, which function to process most spontaneous, alkylated, and oxidative DNA damage. We report here a physical interaction between WRN and pol beta, and using purified proteins reconstitute of a portion of the long-patch BER pathway to examine a potential role for WRN in this repair response. We demonstrate that WRN stimulates pol beta strand displacement DNA synthesis and that this stimulation is dependent on the helicase activity of WRN. In addition, a truncated WRN protein, containing primarily the helicase domain, retains helicase activity and is sufficient to mediate the stimulation of pol beta. The WRN helicase also unwinds a BER substrate, providing evidence that WRN plays a role in unwinding DNA repair intermediates. Based on these findings, we propose a novel mechanism by which WRN may mediate pol beta-directed long-patch BER.  相似文献   

14.
Sld2 is essential for the initiation of DNA replication, but the mechanism underlying its role in replication is not fully understood. The S-phase cyclin dependent kinase (S-CDK) triggers the association of Sld2 with Dpb11, and a phosphomimetic mutation of Sld2, Sld2T84D, functionally mimics the S-CDK phosphorylated state of Sld2. We report that Sld2T84D binds directly to the single-stranded (ss) DNA of two different origins of replication, and S-CDK phosphorylation of Sld2 stimulates the binding of Sld2 to origin ssDNA. Sld2T84D binds to a thymine-rich ssDNA region of the origin ARS1, and substitution of ARS1 thymines with adenines completely disrupts binding of Sld2T84D. Sld2T84D enhances the ability of origin ssDNA to pulldown Dpb11, and Sld2 binding to origin ssDNA may be important to allow Sld2 and Dpb11 to associate with origin DNA. We also report that Sld2T84D anneals ssDNA of an origin sequence. Dpb11 anneals ssDNA to low levels, and the addition of Sld2T84D with Dpb11 results in higher annealing activity than that of either protein alone. Sld2-stimulated annealing may be important for maintaining genome stability during the initiation of DNA replication.  相似文献   

15.
Masai H  Deneke J  Furui Y  Tanaka T  Arai KI 《Biochimie》1999,81(8-9):847-857
The E. coli PriA protein, a DEXH-type DNA helicase with unique zinc finger-like motifs interrupting the helicase domains, is an essential component of the phiX174-type primosome and plays critical roles in RecA-dependent inducible and constitutive stable DNA replication (iSDR and cSDR, respectively) as well as in recombination-dependent repair of double-stranded DNA breaks. B. subtilis PriA (BsPriA) protein contains the conserved helicase domains as well as zinc finger-like motifs with 34% overall identity with the E. coli counterpart. We overexpressed and purified BsPriA and examined its biochemical properties. BsPriA binds specifically to both n'-pas (primosome assembly site) and D-loop and hydrolyzes ATP in the presence of n'-pas albeit with a specific activity about 30% of that of E. coli PriA. However, it is not capable of supporting n'-pas-dependent replication in vitro, nor is it able to support ColE1-type plasmid replication in vivo which requires the function of the phiX174-type primosome. We also show that a zinc finger mutant is not able to support recombination-dependent DNA replication, as measured by the level of iSDR after a period of thymine starvation, nor wild-type level of growth, cell morphology and UV resistance. Unexpectedly, we discovered that an ATPase-deficient mutant (K230D) is not able to support iSDR to a full extent, although it can restore normal growth rate and UV resistance as well as non-filamentous morphology in priA1::kan mutant. K230D was previously reported to be fully functional in assembly of the phiX174-type primosome at a single-stranded n'-pas. Our results indicate that ATP hydrolysis/ helicase activity of PriA may be specifically required for DNA replication from recombination intermediates in vivo.  相似文献   

16.
Mini-chromosome Maintenance (MCM) proteins play an essential role in both initiation and elongation phases of DNA replication in Eukarya. Genes encoding MCM homologs are present also in the genomic sequence of Archaea and the MCM-like protein from the euryarchaeon Methanobacterium thermoautotrophicum (Mth MCM) was shown to possess a robust ATP-dependent 3'-5' DNA helicase activity in vitro. Herein, we report the first biochemical characterization of a MCM homolog from a crenarchaeon, the thermoacidophile Sulfolobus solfataricus (Sso MCM). Gel filtration and glycerol gradient centrifugation experiments indicate that the Sso MCM forms single hexamers (470 kDa) in solution, whereas the Mth MCM assembles into double hexamers. The Sso MCM has NTPase and DNA helicase activity, which preferentially acts on DNA duplexes containing a 5'-tail and is stimulated by the single-stranded DNA binding protein from S. solfataricus (Sso SSB). In support of this functional interaction, we demonstrated by immunological methods that the Sso MCM and SSB form protein.protein complexes. These findings provide the first in vitro biochemical evidence of a physical/functional interaction between a MCM complex and another replication factor and suggest that the two proteins may function together in vivo in important DNA metabolic pathways.  相似文献   

17.
The product of the gene mutated in Bloom's syndrome, BLM, is a 3′–5′ DNA helicase belonging to the highly conserved RecQ family. In addition to a conventional DNA strand separation activity, BLM catalyzes both the disruption of non-B-form DNA, such as G-quadruplexes, and the branch migration of Holliday junctions. Here, we have characterized a new activity for BLM: the promotion of single-stranded DNA (ssDNA) annealing. This activity does not require Mg2+, is inhibited by ssDNA binding proteins and ATP, and is dependent on DNA length. Through analysis of various truncation mutants of BLM, we show that the C-terminal domain is essential for strand annealing and identify a 60 amino acid stretch of this domain as being important for both ssDNA binding and strand annealing. We present a model in which the ssDNA annealing activity of BLM facilitates its role in the processing of DNA intermediates that arise during repair of damaged replication forks.  相似文献   

18.
19.
The antibiotic heliquinomycin inhibited cellular DNA replication at IC(50) of 2.5 μM without affecting level of chromatin-bound MCM4 and without activating the DNA replication stress checkpoint system, suggesting that heliquinomycin perturbs DNA replication mainly by inhibiting the activity of replicative DNA helicase that unwinds DNA duplex at replication forks. Among the DNA helicases involved in DNA replication, DNA helicase B was inhibited by heliquinomycin at IC(50) of 4.3 μM and RECQL4 helicase at IC(50) of 14 μM; these values are higher than that of MCM4/6/7 helicase (2.5 μM). These results suggest that heliquinomycin mainly targets actions of the replicative DNA helicases. Gel-retardation experiment indicates that heliquinomycin binds to single-stranded DNA. The single-stranded DNA-binding ability of MCM4/6/7 was affected in the presence of heliquinomycin. The data suggest that heliquinomycin inhibits the DNA helicase activity of MCM4/6/7 complex by stabilizing its interaction with single-stranded DNA.  相似文献   

20.
The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg2+ or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号