首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualization of lipoprotein receptors by ligand blotting   总被引:32,自引:0,他引:32  
This paper describes the visualization of the low density lipoprotein (LDL) receptor by ligand blotting. Preparations of detergent-solubilized membranes are subjected to one- or two-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, after which the proteins are transferred to nitrocellulose paper. The paper is incubated with native LDL and then with an 125I-labeled antibody against LDL, and the bound antibody is visualized by autoradiography. The success of LDL blotting depends on the omission of sulfhydryl reducing agents from the electrophoresis system. Intrachain disulfide bonds allow the receptor to retain its binding activity even after electrophoresis in the presence of SDS. In identifying LDL receptors, the ligand blotting technique is as sensitive as immunoblotting with a monoclonal antibody against the LDL receptor; it can therefore be used to identify receptors when no anti-receptor antibodies are available. We use this technique to show that the LDL receptor of the rabbit adrenal gland has the same molecular weight as the LDL receptor of the bovine adrenal cortex and human fibroblasts. The ligand blotting technique may be generally applicable for visualization of other plasma membrane receptors after SDS-gel electrophoresis.  相似文献   

2.
Gold-low density lipoprotein (LDL) conjugates were used to detect the LDL receptor on nitrocellulose paper. Solubilized rat liver membrane proteins were subjected to electrophoresis and electroblotted onto nitrocellulose paper. The receptor was then detected as a red band (within 10 min) by overlaying with the LDL conjugates. The coloration was prevented by unlabeled LDL, EDTA, and suramin but not by unlabeled HDL3. In the dot blot assay, detection with the colloidal gold-LDL conjugates was as sensitive as both the autoradiographic method with 125I-labeled LDL and the biotinylated LDL method; the estimated limit of detection by scanning densitometry was 1.6 femtomoles of receptor protein. When the coloration obtained with the colloidal gold-LDL conjugates was intensified by photochemical silver staining, down to 200 attomoles of the LDL receptor could be detected. In this assay, the EDTA-sensitive binding of colloidal gold-LDL to solubilized hepatic membrane proteins was 12 times higher for rats treated with 17 alpha-EE than for normal rats. The use of colloidal gold-LDL conjugates is therefore a very easy, safe, inexpensive, fast and sensitive method for the detection of the LDL receptor on nitrocellulose paper. Furthermore, with silver staining and scanning densitometry, the colloidal gold-LDL conjugates could be used in a dot blot assay to quantify tissue and cell LDL receptors down to attomolar levels.  相似文献   

3.
The low density lipoprotein (LDL) receptor has been shown to be a plasma membrane glycoprotein responsible for the cellular binding and endocytosis of plasma lipoproteins. Inasmuch as the Golgi apparatus has been shown to participate in glycoprotein processing and in the assembly of plasma lipoproteins by hepatic and intestinal epithelial cells, the present studies were designed to test the hypothesis that lipoprotein receptors are present within Golgi membranes. Utilizing ligand blotting with a variety of iodinated lipoproteins, several lipoprotein-binding proteins were identified in rat liver Golgi membranes at apparent molecular weights (Mr) 200,000, 160,000, 130,000, 120,000, 100,000, 80,000, and 70,000. The 130,000 protein was the most prominent and was identified as the mature LDL receptor by its binding characteristics and an Mr characteristic of the plasma membrane receptor. Enzymatic deglycosylation studies suggested that the 120,000 and 100,000 proteins were LDL receptor precursors lacking sialic acid. Antibody to the LDL receptor recognized all the bands on immunoblots except the 70,000 protein, with the 130,000 protein being the most prominent. Isolation of the Golgi fractions in the presence of protease inhibitors did not eliminate any of the proteins recognized by the antibody but did result in sharper bands on the blots. Additionally, we investigated the hypothesis that conditions that regulate plasma membrane LDL receptors also cause detectable changes in receptors in Golgi membranes. All the binding proteins were increased in Golgi membranes from rats treated with 17-alpha-ethynylestradiol. Colchicine caused an accumulation of 120,000 Mr protein, suggesting blockage of final sialylation in the trans Golgi. When protein synthesis was inhibited by cycloheximide, there was no reduction of mature LDL receptors in Golgi membranes, consistent with recycling of receptors through this organelle.  相似文献   

4.
An ultracentrifugation assay has been developed to measure low density lipoprotein (LDL) receptor activity in membranes prepared from cultured human fibroblasts. The binding site for 125I-labeled LDL in isolated membranes reflected the properties of the LDL receptor previously demonstrated in intact fibroblasts. It exhibited high affinity (Kd approximately 4 microgram of LDL protein/ml), specificity (LDL approximately 400-fold more effective than high density lipoprotein in competing with 125I-LDL for the binding site), dependence on calcium, and susceptibility to destruction by pronase. The number of LDL receptors detected in the in vitro membrane binding assay was similar to the number detected in intact cells. The number of receptors was reduced in membranes from fibroblasts that were grown in the presence of 25-hydroxycholesterol plus cholesterol and in fibroblast membranes from a subject with homozygous familial hypercholesterolemia, two situations in which the number of LDL receptors in intact fibroblasts is known to be reduced. The availability of a membrane binding assay that faithfully reflects the properties of the physiologic LDL receptor of intact cells should permit the characterization of this receptor in organs from intact humans and animals.  相似文献   

5.
The role of the cellular receptor for the low-density lipoproteins (LDL) in cholesterol transport was initially defined through the study of nonhepatic cells in vitro. Since the liver is central in plasma lipoprotein metabolism, an investigation of hepatic lipoprotein receptors is important for understanding normal lipoprotein transport. Utilizing human hepatic and fibroblast membranes, the characteristics of receptors for LDL from hepatic and nonhepatic tissues were directly compared. Human hepatic membranes reversibly bound LDL within 5 min. Although both fibroblast and hepatic membranes saturably bound LDL at 37 degrees C, the fibroblast LDL receptor affinity (Kd = 2.5 X 10(-8) M) and number (5.5 X 10(12) sites/mg membrane protein) were greater than the hepatic receptor affinity (Kd = 10.8 X 10(-8) M) and number (0.5 X 10(12) sites/mg membrane protein). In contrast to the fibroblast LDL receptor which was unable to bind LDL in the presence of EDTA, the hepatic LDL receptor binding of LDL was only partially blocked by EDTA. The binding of LDL to its hepatic receptor is highly temperature-dependent, and studies utilizing both radiolabeled LDL and colloidal gold-labeled LDL indicate that little, if any, binding of LDL hepatic membranes occur at 0-4 degrees C. The hepatic membrane receptor(s) (Mr approximately equal to 270 000 and 330 000) differ from that of the fibroblast LDL receptor (Mr approximately equal to 130 000) and these proteins are present in hepatic membranes from a patient lacking the fibroblast LDL receptor. These data indicate that an expressed hepatic LDL receptor has unique properties different from those of the fibroblast LDL receptor and that the expressed protein(s) is genetically distinct from the fibroblast receptor.  相似文献   

6.
A new technique has been developed to identify low-density-lipoprotein (LDL) receptors on nitrocellulose membranes, after transfer from SDS/polyacrylamide gels, by ligand blotting with biotin-modified LDL. Modification with biotin hydrazide of periodate-oxidized lipoprotein sugar residues does not affect the ability of the lipoprotein to bind to the LDL receptor. Bound lipoprotein is detected with high sensitivity by a streptavidin-biotin-peroxidase complex, and thus this method eliminates the need for specific antibodies directed against the ligand. The density of the bands obtained is proportional to the amount of pure LDL receptor protein applied to the SDS/polyacrylamide gel, so that it is possible to quantify LDL receptor protein in cell extracts. Biotin can be attached to other lipoproteins, for example very-low-density lipoproteins with beta-mobility, and thus the method will be useful in the identification and isolation of other lipoprotein receptors.  相似文献   

7.
1. We have compared the concentration and chemical composition of carp and human plasma lipoproteins and studied their interaction with human fibroblast LDL receptors. 2. The main lipoproteins in carp are of high density (HDL) in contrast to low density lipoproteins (LDL) in human. 3. Carp lipoproteins are devoid of apolipoprotein (apo) E, a major ligand for interaction with LDL receptors in mammals. 4. Carp very low density lipoproteins (VLDL) and LDL but not HDL nor apoA-I cross react with human LDL in their interaction with LDL receptors on human cultured fibroblasts. 5. Carp liver membranes possess high affinity receptors that are saturable and have calcium dependent ligand specificity (apoB and apoE) similar to human LDL receptor. Carp VLDL and LDL but not HDL nor its major apolipoprotein complexed to L-alpha-phosphatidylcholine dimyristoyl (apoA-I-DMPC) competed with the specific binding of human LDL to this receptor.  相似文献   

8.
The characteristics of the binding of homologous and heterologous (human) LDL to membrane preparations from porcine adrenal cortex have been determined. The membranes displayed a single class of high-affinity, saturable binding site for both 125I-labelled porcine and human LDL, which was dependent on divalent cations, in addition to a low-affinity, non-saturable component(s). Porcine LDL displaced both 125I-labelled porcine and 125I-labelled human LDLs from the high-affinity binding site more effectively than human LDL, reflecting the lower Kd, (13.2 micrograms/ml) for porcine than human (Kd 19.2 micrograms/ml) LDL. These values are comparable to those obtained for half-maximal binding of human and bovine LDLs in a bovine adrenocortical membrane system (Kovanen, P.T., Basu, S.K., Goldstein, J.L. and Brown, M.S. (1979) Endocrinology 104, 610-616). Tryptic modification of porcine LDL (T-LDL) diminished its ability to compete with 125I-labelled native LDL for the high-affinity binding site; in contrast, 125I-labelled porcine T-LDL showed an elevated receptor affinity (Kd 9.7 micrograms/ml) and was more efficiently displaced by its unlabelled counterpart than by native porcine LDL. Tryptic treatment of human LDL similarly increased its binding affinity (Kd 8.3 micrograms/ml), although in this case, the unlabelled T-LDL displaced not only 125I-labelled human T-LDL but also 125I-labelled human LDL from the high-affinity site more effectively than native LDL. We conclude that (i) porcine adrenocortical membranes possess binding sites specific for LDL and resembling the apolipoprotein B,E receptors already demonstrated in murine, bovine and human adrenal cortex; (ii) tryptic modification of porcine LDL may remove or destroy segments of apolipoprotein B100 which contribute to receptor recognition sites on the surface of the particle; (iii) trypsinised porcine LDL may interact with the membrane binding site by a mechanism differing from that by which native LDL binds, and (iv) trypsinisation of human LDL may cleave or remove species-specific segments of the B100 protein at or close to the receptor recognition site(s) on the particle, thus decreasing structural differences between porcine and human LDL, and thereby enhancing its binding affinity for the porcine receptor.  相似文献   

9.
Freshly prepared plasma membranes from rat corpora lutea were examined for the presence of low density lipoprotein (LDL) and high density lipoprotein (HDL) receptors by determining the specific binding of 125I-LDL and 125I-HDL. These membranes have two types of binding site for 125I-LDL, one with high affinity (Kd = 7.7 micrograms of LDL protein/ml), the other with low affinity (Kd = 213 micrograms of LDL protein/ml) and one type of binding site for 125I-HDL with Kd = 17.8 micrograms of HDL protein/ml. LDL receptor is sensitive to pronase and trypsin; HDL receptor, however, is resistant. The binding reaction was further characterized with respect to effect of time and temperature of incubation, requirement of divalent metal ion, influence of ionic strength, and binding specificity. In vivo pretreatment of rats with human choriogonadotropin (hCG) resulted in induction of both LDL and HDL receptors in a dose- and time-dependent manner when compared with saline-injected controls. The induction of lipoprotein receptors by hCG treatment is target organ-specific since the increase was seen only in the ovarian tissue. Membranes prepared from liver, kidney, and heart did not show an increase in lipoprotein receptors after hCG injection. An examination of the equilibrium dissociation constants for 125I-LDL and 125I-HDL binding after hCG administration revealed that the increase in binding activity was due to an increase in the number of binding sites rather than to a change in the binding affinity. In conclusion, rat corpus luteum possesses specific receptors for both LDL and HDL and these receptors are regulated by gonadotropins.  相似文献   

10.
Recognition of low density lipoprotein (LDL) by human adipocytes is not dependent on the classical LDL (apoprotein B-E) receptor. To assess whether LDL phospholipids have a role in adipocyte-LDL interactions, binding studies were carried out with human LDL modified with cobra venom phospholipase A2 (PLA2) and freshly isolated adipocytes and purified adipocyte plasma membranes prepared from surgical biopsies. LDL incubated with PLA2 showed increased monoacylphospholipid content, decreased diacylphospholipid content, and increased anodic migration on agarose gel electrophoresis. LDL cholesterol, triglyceride, and protein content remained unchanged. Typically, modification of 16 and 47% of LDL phospholipids enhanced specific binding of 125I-labelled LDL to plasma membranes progressively from 3.1 micrograms LDL bound/mg membrane protein (control) to 5.8 and 28.2 micrograms LDL bound/mg membrane protein, respectively. Nonspecific binding was not altered significantly. Excess unlabelled native LDL and high density lipoprotein (HDL3) effectively inhibited binding of PLA2-modified LDL. Freshly isolated adipocytes also showed enhanced binding and uptake of PLA2-modified LDL (0.1 vs. 0.9 micrograms LDL/10(6) cells x 2 h), control vs. modified). The results demonstrate that alterations of LDL phospholipids significantly enhance LDL binding and suggest a regulatory role for phospholipids in lipoprotein-cell interaction. Furthermore, the results support the view that human adipose tissue may be involved in the metabolism of modified lipoproteins, in vivo.  相似文献   

11.
We have investigated the binding of high-density lipoprotein (HDL3, d = 1.12-1.21 g/ml), and apolipoprotein E-deficient human and rat HDL, obtained by heparin-Sepharose affinity chromatography, to intact cells and membrane preparations of rat intestinal mucosal cells. Binding of 125I-labeled HDL3 to the basolateral plasma membranes was characterised by a saturable, specific process (Kd = 21 micrograms of HDL3 protein/ml, Bmax = 660 ng HDL3 protein/mg membrane protein) and E-deficient human HDL demonstrated a similar affinity for the binding site. The basolateral plasma membranes isolated from proximal and distal portion of rat small intestine showed similar binding affinities for HDL3, whereas the interaction of HDL with brush-border membranes was characterised by mainly nonspecific and nonsaturable binding. The binding of 125I-labeled HDL3 to basolateral plasma membranes was competitively inhibited by unlabeled HDL3 but less efficiently by unlabeled human LDL. The putative HDL receptor was not dependent on the presence of divalent cations but was markedly influenced by temperature and sensitive to pronase treatment. We have also demonstrated, using whole intestinal mucosal cells, that lysine and arginine-modified HDL3 inhibited binding of normal 125I-labeled HDL3 to the same extent as normal excess HDL3. These data suggest that basolateral plasma membranes of rat intestinal mucosal cells possess a specific receptor for HDL3 which contains mainly apolipoprotein A-I and A-II, and the mechanisms of recognition of HDL3 differ from those involved in binding to the B/E receptor.  相似文献   

12.
Bovine adrenocortical cells in monolayer culture produce cortisol and respond to corticotropin (ACTH) by an increase in cortisol secretion. Several lines of evidence are indicative that much of the cholesterol that serves as precursor for steroid hormone biosynthesis by these cells is derived from low-density lipoprotein (LDL) cholesterol that is taken up endocytotically by means of specific receptors localized in bovine adrenocortical plasma membranes. ACTH stimulated this process concomitant with an increase in steroid production. In the absence of LDL, ACTH had no effect on steroid biosynthesis. ACTH action in bovine adrenocortical cells resulted in an increase in the number of LDL receptor sites in the membrane fractions, whereas the dissociation constant for LDL binding was not changed. Chloroquine and NH4Cl, considered to be inhibitors of lysosomal degradative activity, caused an increase in the number of [125I]iodoLDL binding sites in the plasma membrane but the effect of ACTH was still apparent in the presence of these agents. These results are suggestive that the lifetime of the LDL receptor is increased when lysosomal activity is inhibited. When aminoglutethimide was added to block cholesterol side-chain cleavage activity and inhibit steroid production, the number of [125I]iodoLDL binding sites in the membrane fractions prepared from bovine adrenocortical cells cultured in the presence of ACTH was reduced to 50% of that in cells maintained in aminoglutethimide-free medium. However, under these conditions the number of binding sites was still significantly greater than in cells maintained in the absence of ACTH. The effects of aminoglutethimide on uptake and degradation of [125I]iodoLDL were similar to the effects on the number of [125I]iodoLDL binding sites. Based on these results, we conclude that the action of ACTH to stimulate LDL metabolism in bovine adrenocortical cells results from an increase in the number of LDL binding sites in the plasma membranes. This action of ACTH appears to be, at least in part, independent of cholesterol utilization for cortisol biosynthesis. However, the effect of aminoglutethimide is indicative that changes in the intracellular cholesterol concentration might modulate the action of ACTH to increase the number of LDL binding sites and therefore to stimulate LDL degradation.  相似文献   

13.
Sorting nexins (SNXs) comprise a family of proteins characterized by the presence of a phox-homology domain, which mediates the association of these proteins with phosphoinositides and recruits them to specific membranes or vesicular structures within cells. Although only limited information about SNXs and their functions is available, they seem to be involved in membrane trafficking and sorting processes by directly binding to target proteins such as certain growth factor receptors. We show that SNX17 binds to the intracellular domain of some members of the low-density lipoprotein receptor (LDLR) family such as LDLR, VLDLR, ApoER2 and LDLR-related protein. SNX17 resides on distinct vesicular structures partially overlapping with endosomal compartments characterized by the presence of EEA1 and rab4. Using rhodamine-labeled LDL, it was possible to demonstrate that during endocytosis, LDL passes through SNX17-positive compartments. Functional studies on the LDLR pathway showed that SNX17 enhances the endocytosis rate of this receptor. Our results identify SNX17 as a novel adaptor protein for LDLR family members and define a novel mechanism for modulation of their endocytic activity.  相似文献   

14.
Summary The strong excitatory activity of L-glutamic acid on central nervous system neurons is thought to be produced by interaction of this amino acid with specific neuronal plasma membrane receptors. The binding of L-glutamate to these surface receptors brings about an increase in membrane permeability to Na+ and Ca2+ ions presumably through direct activation of ion channels linked to the membrane receptors. The studies described in this paper represent attempts to define the subcellular distribution and pharmacological properties of the recognition site for L-glutamic acid in brain neuronal preparations, to isolate and explore the molecular characteristics of the receptor recognition site, and, finally, to demonstrate the activation of Na+ channels in synaptic membranes following the interaction of glutamate with its receptors.Radioligand binding assays with L-[3H] glutamic acid have been used to demonstrate a relative enrichment of these glutamate recognition sites in isolated synaptic plasma membranes. The specific binding of L-[3H] glutamate to these membrane sites exhibits rapid association and dissociation kinetics and rather complex equilibrium binding kinetics. The glutamate binding macromolecule from synaptic membranes has been solubilized and purified and was shown to be a small molecular weight glycoprotein (MT 13 000). This protein tends to form aggregates which have higher specific activity at low concentrations of glutamate than the MT 13 000 protein has. The overall affinity of the purified protein is lower than that of the high affinity sites in the membrane. Nevertheless, the purified protein exhibits pharmacological characteristics very similar to those of the membrane binding sites. On the basis of its pharmacological properties this protein belongs in the category of the physiologic glutamate preferring receptors.By means of differential solubilization of membrane proteins with Na-cholate, it was shown that this recognition site is an intrinsic synaptic membrane protein whose binding activity is enhanced rather than diminished by cholate extraction of the synaptic membranes. The role of membrane constituents in regulating the binding activity of this protein has been explored and a possible modulation of glutamate binding by membrane gangliosides has been demonstrated. Finally, this glutamate binding glycoprotein is a metalloprotein whose activity is dependent on the integrity of its metallic (Fe) center. This is a clear distinguishing characteristic of this protein vis-à-vis the glutamate transport carriers.The presence of functional glutamate receptors in synaptosomes and resealed synaptic plasma membranes has also been documented by the demonstration of glutamate-activated Na+ flux across the membrane of these preparations. The bidirectionality, temperature independence, and apparent desensitization of this stimulated flux following exposure to high concentrations of glutamate are properties indicative of a receptor-initiated ion channel activation. It would appear, then, that the synaptic membrane preparations provide a very useful system for the study of both recognition and effector function of the glutamate receptor complex.  相似文献   

15.
16.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

17.
The presence of specific receptors for vitellogenin (Vg) in ovary membranes of the mosquito, Aedes aegypti, was demonstrated by an in vitro binding assay. The binding reaction, which is dependent on pH and Ca2+, uses 4 micrograms membrane protein, 35S-Vg labeled metabolically by fat body culture in vitro, and unlabeled vitellin (Vn) for competition. At pH 7.0 and in the presence of 5 mM Ca2+, the binding of Vg to its receptor reaches equilibrium within 60-90 min at both 4 and 25 degrees C. The binding is specific to membranes prepared only from ovaries. While mosquito Vg and Vn bind with equal affinity to Vg receptors on ovary membranes, neither locust Vg nor mouse IgG has any measurable affinity towards these sites. Nonlinear least square analysis of the saturation isotherms is consistent with the presence of a single class of Vg receptors on ovary membranes with a dissociation constant (Kd) of 0.18 microM.  相似文献   

18.
Characterization of apoB, E receptor function in the luteinized ovary   总被引:2,自引:0,他引:2  
Recent findings from this laboratory have led to the suggestion that the hormone-producing cells of the rat luteinized ovary in situ may obtain a large share of low density lipoprotein (LDL) cholesterol without actually internalizing the intact lipoprotein particles. We have shown that the lipoproteins are trapped at the surface of the luteal cells in a rich network of "microvillar channels" and have theorized that these channel membranes, with their large surface area for interacting with lipoprotein particles, may function in the cholesterol transfer process. In the current study, we try to establish what proportion of the human (h)LDL-cholesterol transfer in the in situ perfused tissue occurs by a classical apoB, E receptor-mediated process versus a surface extraction process. We examine the tissue for the presence of apoB, E receptors, and characterize the structural/functional interaction of hLDL with the apoB, E receptor utilizing a variety of modified hLDL particles as probes. Then, using nonmetabolizable radiolabels for both the protein and cholesteryl ester moieties of these LDL probes, we attempt to quantify the extent to which apoB, E receptors in the ovary contribute to the uptake of hLDL-cholesterol during steroidogenesis. Our experiments show that although the luteinized ovary contains apoB, E receptor protein, hLDL interacts with the tissue atypically. That is, despite modifications of LDL amino acid residues to prevent interaction with the apoB, E receptor, the modified ligands continue to contribute cholesterol for luteal cell internalization and/or steroidogenesis. We conclude, therefore, that in this tissue much of the LDL-cholesterol is not delivered by the apoB, E receptor pathway.  相似文献   

19.
We have developed a rapid and sensitive method for total DNA measurement using single-stranded DNA binding protein from E coli conjugated with horseradish peroxidase or urease. To detect DNA, the sample is heated or alkali treated to denature the DNA and then filtered through nylon or nitrocellulose membranes. After the single-stranded DNA is bound to the membrane, single-stranded DNA binding protein enzyme-conjugate is incubated with the membrane. Next, the unbound conjugate is washed off the membrane and the bound conjugate detected colorimetrically. The assay can detect 10 pg of DNA in less than 3 hr. This method can be applied to the detection of DNA contamination in therapeutic proteins produced by recombinant DNA or hybridoma techniques.  相似文献   

20.
Monoiodotyrosine ([125I]ChTX) binds with high affinity to a single class of receptors present in bovine aortic smooth muscle sarcolemmal membranes that are functionally associated with the high-conductance Ca(2+)-activated K+ channel [maxi-K channel; Vázquez, J., et al. (1989) J. Biol. Chem. 265, 20902-20909]. Cross-linking experiments carried out with this preparation in the presence of [125I]ChTX and disuccinimidyl suberate indicate specific incorporation of radioactivity into a protein of Mr 35,000. The smooth muscle ChTX receptor can be solubilized in active form in the presence of selected detergents. Treatment of membranes with digitonin releases about 50% of the ChTX binding sites. The solubilized receptor retains the same biochemical and pharmacological properties that are characteristic of toxin interaction with membrane-bound receptors. The solubilized receptor binds specifically to wheat germ agglutinin-Sepharose resin, suggesting that it is a glycoprotein. Functional ChTX binding sites can also be solubilized in 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS). Sucrose density gradient centrifugation of either digitonin or CHAPS extracts indicates that the ChTX receptor has a high apparent sedimentation coefficient (s20,w = 23 and 18 S, respectively). Cross-linking experiments indicate that the appearance of the 35-kDa membrane protein correlates with ChTX binding activity after both wheat germ agglutinin-Sepharose and sucrose density gradient centrifugation steps. Given the high apparent sedimentation coefficient of the ChTX receptor, the 35-kDa membrane protein may be a subunit of a higher molecular weight complex which forms the maxi-K channel in smooth muscle sarcolemma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号