首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testis and head extracts of sterile male intersemispecific hybrid Drosophila paulistorum are pathogenic when injected into Ephestia kuehniella larvae. The time and frequency of death of the recipients is a function of the extract concentration. Extracts of Ephestia recipients are pathogenic and will kill E. kuehniella larvae and D. paulistorum adults. Larval Drosophila recipients of these extracts survive through pupation. A majority of these recipients fail to eclose. Those animals which do survive to the adult stage and which are fertile demonstrate the same pattern of sterility among their progeny as is found in D. paulistorum hybrids and recipients of D. paulistorum extracts. The results indicate that the pathogenicity of the extracts is due to the mycoplasma-like microorganisms which are responsible for the male intersemispecific hybrid sterility in D. paulistorum. The mycoplasma-like microorganisms grow rapidly in E. kuehniella hosts, with a division time of approximately 1.8 hr, and they retain their host specificity for the semispecies of D. paulistorum.  相似文献   

2.
UNUSUAL FILAMENTOUS STRUCTURES IN THE PARAGONIA OF MALE DROSOPHILA   总被引:3,自引:1,他引:2       下载免费PDF全文
Drosophila paulistorum is a complex of five incipient species which when crossed produce sterile hybrid males and fertile females. Sterility of the male progeny can sometimes be induced by injecting females of one strain (Mesitas) with a homogenate of males of another strain (Santa Marta) or of hybrids between these strains, and then crossing the recipient females to Mesitas males. Filamentous structures have been found in cytoplasmic vacuoles in paragonial cells in males of these and other similar strains and their hybrids. These structures, which contain RNA, possess a helical substructure and resemble certain viruses. Large filamentous structures found in the lumen of the paragonia are also described.  相似文献   

3.
Crosses among the six semispecies of Drosophila paulistorum produce sterile male hybrids. This sterility is caused by an agent which has characteristics of a microorganism. It is pathogenic in a secondary host, the larvae of the Mediterranean meal moth, Ephestia kuehniella, and can be serially passaged in Ephestia, where it is lethal. The agent was passaged back into D. paulistorum, where it induced sterility in males of a semispecies different from that of origin of the agent. Infectious particles were obtained from an extract of infected Ephestia by ultracentrifugation in a sucrose-Ficoll-metrizamide gradient. Both crude and purified extracts were lyophilized and stored indefinitely without loss of killing power. The agent was destroyed by low pH, lipid solvents, ultraviolet light, and exposure to a temperature of 56°C for 30 min. It appeared to be sensitive to tetracycline and insensitive to penicillin, suggesting that the agent is not a virus, but more likely a cell wall-deficient bacterium or mycoplasma-like organism.  相似文献   

4.
In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.  相似文献   

5.
6.
L. W. Zeng  R. S. Singh 《Genetics》1993,135(1):135-147
We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F(1) hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F(1) hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.  相似文献   

7.
Subspecies of Drosophila pseudoobscura, one occurring in the United States and the other in Bogota, Columbia, exhibit Haldane's Rule in one direction of the cross. Additionally, D. pseudoobscura produces two sperm types: short, sterile sperm and long, fertile, sperm. Here I examine the relationship between the production of short and long sperm and hybrid sterility. Fertile and sterile hybrid males produce a greater proportion of short sperm compared to parental males with sterile hybrids producing mainly short, immotile sperm. Sperm transfer and storage patterns were similar between fertile hybrid and parental strains; and unexpectedly, short, immotile sperm from sterile hybrids were stored. These findings raise the question of whether different genetic mechanisms disrupt both sperm heteromorphic production and sperm motility and whether this indicates that females exert some control over sperm storage.  相似文献   

8.
In the Drosophila melanogaster subgroup, the yakuba species complex, D. yakuba, D. santomea and D. teissieri have identical mitochondrial genomes in spite of nuclear differentiation. The first two species can be readily hybridized in the laboratory and produce fertile females and sterile males. They also form hybrids in natural conditions. Nonetheless, the third species, D. teissieri, was thought to be unable to produce hybrids with either D. yakuba or D. santomea. This in turn posed the conundrum of why the three species shared a single mitochondrial genome. In this report, we show that D. teissieri can indeed hybridize with both D. yakuba and D. santomea. The resulting female hybrids from both crosses are fertile, whereas the hybrid males are sterile. We also characterize six isolating mechanisms that might be involved in keeping the three species apart. Our results open the possibility of studying the history of introgression in the yakuba species complex and dissecting the genetic basis of interspecific differences between these three species by genetic mapping.  相似文献   

9.
We have characterized two related regions of twoPetunia mitochondrial genomes in order to understand how plant mt genomes from a cytoplasmic male sterile (cms) line and a fertile line diverge from one another. Restriction maps of these regions indicate that a sequence arrangement shared by the two genomes adjoins sequences which are not shared at the corresponding locations in the two genomes. A point where the mt genomes from the cms line and the fertile lines diverge from each other was identified and mapped. Previously we had observed that somatic hybrids constructed from the cms and the fertile line contained mt genomes carrying new combinations of parental mtDNA restriction fragments (3). Using the restriction maps of the two related mtDNA regions, a mtDNA arrangement unique to the cms parent could be shown to be present in all 17 stable sterile somatic hybrids tested and none of the 24 stable fertile somatic hybrids tested. This data does not exclude the possibility that additional, as yet unidentified, mtDNA arrangements unique to the cms parent might also be found exclusively in sterile somatic hybrids. Whether or not the sterile parental mtDNA arrangement reported here is functionally related to cms, it apparently segregates with cms in somatic hybrids.  相似文献   

10.
Summary Male sterile plants appeared in the progeny of three fertile plants obtained after one cycle of protoplast culture from a fertile botanical line and two androgenetic lines ofNicotiana sylvestris. These plants showed the same foliar and floral abnormalities as the cytoplasmic male sterile (cms) mitochondrial variants obtained after two cycles of culture. We show that male sterility in these plants is controlled by three independent nuclear genes,ms1, ms2 andms3, while no changes can be seen in the mitochondrial genome. However, differences were found between thein organello mitochondrial protein synthesis patterns of male sterile and parent plants. Two reproducible changes were observed: the presence of a new 20 kDa polypeptide and the absence of a 40 kDa one. Such variations were described previously in mitochondrial protein synthesis patterns of the cms lines. Fertile hybrids of male sterile plants showed normal synthesis patterns. The male sterile plants are thus mutated in nuclear genes involved in changes observed in mitochondrial protein synthesis patterns.  相似文献   

11.
Crosses were made in all combinations of the six diploid species of the Solarium nigrum complex that occur in North America. Some interspecific pollinations failed to yield viable seed; successful crosses gave rise to moderately to highly sterile F1 hybrids. Results of interspecific crosses suggested phylogenetic relationships that were not completely in accord with those suggested by morphology. Interspecific crosses also gave varied results. All interpopulational crosses within S. interius and S. sarachoides produced fully fertile hybrids. In contrast, hybrids within S. americanum and S. douglasii varied from fully fertile to almost completely sterile. Populations of S. pseudogracile could be divided into two groups which are geographically separated but not morphologically differentiated. Fully fertile hybrids resulted from crosses within a group, whereas crosses between groups gave hybrids with reduced fertility. Four crossing groups were observed within 5. nodiflorum; three of the parental groups are sympatric and are morphologically differentiated. Although hybrid sterility in interspecific crosses is sometimes used to support delimitation of species, the presence of sterility in intraspecific crosses suggests that such an interpretation is unwarranted for the S. nigrum complex. Hybrid sterility, therefore, is not considered to have special taxonomic significance in this complex.  相似文献   

12.
The developmental defects causing cytoplasmic male sterility in Petunia parodii are described in isonuclear fertile, sterile, and fertility-restored plants using both light- and scanning electron microscopy. The aberrant development of the sporogenous tissue and tapetal layer caused by the cytoplasmic male sterile cytoplasm in both Petunia hybrida and P. parodii nuclear backgrounds is similar in onset and progression. The degeneration of the sporogenous tissue and tapetal layer of sterile anthers is first apparent late in meiosis and results in highly abnormal sterile sporogenous tissue by tetrad stage of fertile anthers. The stomium and endothecium do not show major developmental differences between fertile and sterile anthers, but the inner connective tissue of sterile anthers contained calcium crystals not found at high abundance in fertile anthers. Ovoid bodies containing magnesium and phosphorus were seen only in the vascular bundles of fertile anthers. Material prepared for the scanning electron microscope by freeze drying showed better retention of fragile morphological features, while critical-point drying permitted examination of nonvolatile structures, such as cell walls.  相似文献   

13.
Mycoplasmalike intracellular symbionts have been located in the pole cells of Drosophila paulistorum embryos. These cells are destined to form the germ cells of both sexes. The symbionts had been previously localized in larval and adult developing and mature ovaries and testes. It is via the egg cytoplasm that these microorganisms are transmitted between generations to apparently cause an infectious and hereditary hybrid male sterility.  相似文献   

14.
Kastritsis  Costas D. 《Chromosoma》1966,19(2):208-222
The gene arrangements in the chromosomes of the races or incipient species of the Drosophila paulistorum complex have been compared in the interracial hybrids. The results are correlated with those obtained by Dobzhansky and Pavlovsky (1962), and also with data on the intraracial polymorphisms, to be published elsewhere. A Standard strain was chosen arbitrarily, the Palmira stock of the Transitional race, and other races and strains described in terms of comparison with the Standard. The minimal number of inverted sections differentiating the Andean race from the Standard is 1, Centroamerican 5, Orinocan 3, Amazonian 6. Little chromosome pairing takes place in the hybrids between the Standard and the Guianan strains. These strains may well be regarded as belonging to a full-fledged species distinct from D. paulistorum complex. The results of the present study furnish little support to the Mayr-Carson hypothesis, according to which diverging incipient species are expected to share few or no intrapopulational polymorphisms.The work reported in this article has been carried under Contract No. AT (30-1)-3096-10, U.S. Atomic Energy Commission.  相似文献   

15.
Summary The chloroplast genomes of three sets of Petunia somatic hybrids were analyzed to examine the relationship between chloroplast DNA (cpDNA) composition and cytoplasmic male sterility (CMS). Chloroplast genomes of somatic hybrid plants were identified either by restriction and electrophoresis of purified cpDNAs or by hybridization of total DNA digests with cloned cpDNA probes that distinguish the parental genomes.The chloroplast genomes of a set of seven somatic hybrids derived from the fusion of Petunia CMS line 2423 and fertile line 3699 were analyzed. All seven plants were fertile, and all exhibited the cpDNA restriction pattern of the sterile cytoplasm. Similarly, four fertile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3677 were found to contain the CMS chloroplast genome. The cpDNA compositions of four fertile and two sterile somatic hybrids derived from the fusion of CMS line 3688 and fertile line 3704 were determined by restriction analysis of purified cpDNAs; all six plants exhibited the cpDNA restriction pattern of line 3704. Thus the CMS phenotype segregates independently of the chloroplast genome in Petunia somatic hybrids, indicating that CMS in Petunia is not specified by the chloroplast genome.  相似文献   

16.
The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of infectious speciation and discuss potential mechanisms that can restrict or promote symbiont-induced speciation at post- and prezygotic levels in nature and under artificial laboratory conditions.  相似文献   

17.
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.  相似文献   

18.
The Drosophila willistoni subgroup represents a complex with varying taxonomic levels. It encompasses D. willistoni and its five sibling species: D. equinoxialis, D. insularis, D. paulistorum, D. pavlovskiana and D. tropicalis. Of these, D. equinoxialis, D. tropicalis and D. willistoni present differentiation at subspecific level, whereas D. paulistorum represents a superspecies, formed by six semispecies. Despite this taxonomic and evolutionary complexity, many of these semi and subspecific taxa have not yet had their phylogenetic status tested in an explicitly molecular study. Aiming to contribute to the understanding of the evolution of this challenging group, we analyzed nucleotide sequences from two mitochondrial and four nuclear datasets, both individually and simultaneously, through different phylogenetic methods. High levels of incongruence were detected among partitions, especially concerning the mitochondrial sequences. As this incongruence was found to be statistically significant and robust to the use of different models and approaches, and basically restricted to mitochondrial loci, we suggest that it may stem mainly from hybridization-mediated asymmetrical introgression. Despite this, our nuclear data finally led to a phylogenetic hypothesis which further refines several aspects related to the willistoni subgroup phylogeny. In this respect, D. insularis, D. tropicalis, D. willistoni and D. equinoxialis successively branched off from the willistoni subgroup main stem, which recently subdivided to produce D. paulistorum and D. pavlovskiana. As regards the semispecies evolution, we found evidence of a recent diversification, which highly influenced the obtained results due to the associated small levels of genetic differentiation, further worsened by the possibly associated incompletely sorted ancestral polymorphisms and by the possibility of introgression. This study also raises the question of whether these semispecies are monophyletic at all. This reasoning is particularly interesting when one considers that similar levels of reproductive isolation could be attained through infection with different Wolbachia strains.  相似文献   

19.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

20.
Male F1 hybrids between inbred strains and Mus macedonicus have very small testes and are sterile. Cytological analysis of testes shows very few meioses. To determine the genetic basis for this sterility, (C57BL/6J × Mus macedonics) F1 females were mated to males from C57BL/10J. In about half the male progeny no meiosis I was observed. About half of the animals that progressed through meiosis I showed other indications of low fertility and the balance appeared fertile. QTL analysis of the progeny suggested that loci on proximal Chrs 17 and X were involved in the sterility and a locus on Chr X in variation of body weight. There is also evidence that X//Y dissociation of the pseudo-autosomal region occurs. The QTLs on Chrs X and 17 together account for about 37% of the variance for testis weight. Congenic lines B.MAC-X(1-38), and B.MAC-17(1-23) have been constructed using a modified speed congenic approach. Testis tubules from B.MAC-X(1-38) are narrow and vacuolated. They contain only Sertoli cells and mitotically dividing spermatogonia. Very occasionally a meiotic metaphase can be observed, but no sperm are produced. Homozygous males from B.MAC-17(1-23) are sterile, producing sperm heads but no complete sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号