首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

2.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

3.
Myosin motor function depends on the interaction between different domains that transmit information from one part of the molecule to another. The interdomain coupling in myosin V is studied with restrained targeted molecular dynamics using an all-atom representation in explicit solvent. To elucidate the origin of the conformational change due to the binding of ATP, targeting forces are applied to small sets of atoms (the forcing sets, FSs) in the direction of their displacement from the rigor conformation, which has a closed actin-binding cleft, to the post-rigor conformation, in which the cleft is open. The “minimal” FS that results in extensive structural changes in the overall myosin conformation is composed of ATP, switch 1, and the nearby HF, HG, and HH helices. Addition of switch 2 to the FS is required to achieve a complete opening of the actin-binding cleft. The restrained targeted molecular dynamics simulations reveal the mechanical coupling pathways between (i) the nucleotide-binding pocket (NBP) and the actin-binding cleft, (ii) the NBP and the converter, and (iii) the actin-binding cleft and the converter. Closing of the NBP due to ATP binding is tightly coupled to the opening of the cleft and leads to the rupture of a key hydrogen bond (F441N/A684O) between switch 2 and the SH1 helix. The actin-binding cleft may mediate the rupture of this bond via a connection between the HW helix, the relay helix, and switch 2. The findings are consistent with experimental studies and a recent normal mode analysis. The present method is expected to be useful more generally in studies of interdomain coupling in proteins.  相似文献   

4.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

5.
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region.  相似文献   

6.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

7.
It has long been known that binding of actin and binding of nucleotides to myosin are antagonistic, an observation that led to the biochemical basis for the crossbridge cycle of muscle contraction. Thus ATP binding to actomyosin causes actin dissociation, whereas actin binding to the myosin accelerates ADP and phosphate release. Structural studies have indicated that communication between the actin- and nucleotide-binding sites involves the opening and closing of the cleft between the upper and lower 50K domains of the myosin head. Here we test the proposal that the cleft responds to actin and nucleotide binding in a reciprocal manner and show that cleft movement is coupled to actin binding and dissociation. We monitored cleft movement using pyrene excimer fluorescence from probes engineered across the cleft.  相似文献   

8.
Structural changes in myosin power many types of cell motility including muscle contraction. Tilting of the myosin light chain domain (LCD) seems to be the final step in transducing the energy of ATP hydrolysis, amplifying small structural changes near the ATP binding site into nanometer-scale motions of the filaments. Here we used polarized fluorescence measurements from bifunctional rhodamine probes attached at known orientations in the LCD to describe the distribution of orientations of the LCD in active contraction and rigor. We applied rapid length steps to perturb the orientations of the population of myosin heads that are attached to actin, and thereby characterized the motions of these force-bearing myosin heads. During active contraction, this population is a small fraction of the total. When the filaments slide in the shortening direction in active contraction, the long axis of LCD tilts towards its nucleotide-free orientation with no significant twisting around this axis. In contrast, filament sliding in rigor produces coordinated tilting and twisting motions.  相似文献   

9.
Actin stimulates myosin's activity by inducing structural alterations that correlate with the transition from a weakly to a strongly bound state, during which time inorganic phosphate (P(i)) is released from myosin's active site. The surface loop at the 50/20-kDa junction of myosin (loop 2) is part of the actin interface. Here we demonstrate that elimination of two highly conserved lysines at the C-terminal end of loop 2 specifically blocks the ability of heavy meromyosin to undergo a weak to strong binding transition with actin in the presence of ATP. Removal of these lysines has no effect on strong binding in the absence of nucleotide, on the rate of ADP binding or release, or on the basal ATPase activity. We further show that the 16 amino acids of loop 2 preceding the lysine-rich region are not essential for actin activation, although they do modulate myosin's affinity for actin in the presence of ATP. We conclude that interaction of the conserved lysines with acidic residues in subdomain 1 of actin either triggers a structural change or stabilizes a conformation that is necessary for actin-activated release of P(i) and completion of the ATPase cycle.  相似文献   

10.
The effect of caldesmon and its actin-binding C-terminal 35 kDa fragment on conformational alterations of actin in a muscle fiber at relaxation, rigor and at simulation of strong and weak binding of myosin heads to actin was studied by polarizational fluorimetry technique. The strong and weak binding forms were mimicked during binding of F-actin of ghost muscle fibers to myosin subfragment-1 modified with NEM (NEM-S1) or pPDM (pPDM-S1), respectively. As a test for alterations in actin conformation, changes in orientation and mobility of a fluorescent probe, TRITC-phalloidin, bound specifically to F-actin were used. The results obtained have shown that during transition of the muscle fiber from the relaxed state into the rigor and during binding of actin filaments to NEM-S1, changes of polarization parameters take place, which are characteristic of formation between actin and myosin of the strong binding and of transformation of actin subunits from the "turned-off" (inactive) to the "turned-on" (active) conformation. Binding of pPDM-S1 to actin and relaxation of the muscle fiber are accompanied, on the contrary, by the changes of orientation and of the fluorescent probe mobility, which are typical of formation of the weak ("non-force-producing") form of actin-myosin binding and of transformation of actin subunits from the active conformation into the inactive one. Caldesmon and its C-terminal fragment markedly inhibit formation of the strong binding at rigor and activate transition of actin monomers to the switched off conformation at relaxation of muscle fiber. In parallel experiments, these regulatory proteins have been shown to inhibit an active force developed at the transition of a muscle fiber from relaxation to rigor. Besides, caldesmon and its fragment decrease the rate of actin filament sliding over myosin in an in vitro motility assay. Caldesmon is suggested to regulate the smooth muscle contraction in an allosterical manner. The alterations in actin conformation inhibit formation of strong binding of myosin cross bridges to actin and activate the ability of weakly bound cross bridges to switch actin monomers from the "on" to the "off" conformation.  相似文献   

11.
Binding of myosin to actin in myofibrils during ATP hydrolysis   总被引:4,自引:0,他引:4  
A M Duong  E Reisler 《Biochemistry》1989,28(3):1307-1313
Measurements of cross-bridge attachment to actin in myofibrils during ATP hydrolysis require prior fixation of myofibrils to prevent their contraction. The optimal cross-linking of myofibrils was achieved by using 10 mM carbodiimide (EDC) under rigor conditions and at 4 degrees C. The fixed myofibrils had elevated MgATPase activity (150%) and could not contract. As judged by chymotryptic digestions and subsequent SDS gel electrophoresis analysis, less than 25% of myosin heads were cross-linked in these myofibrils. The isolated, un-cross-linked myosin heads showed pH-dependent Ca2+- and EDTA(K+)-ATPase activities similar to those of standard intact S-1. For measurements of myosin binding to actin, the modified myofibrils were digested with trypsin at a weight ratio of 1:50 under rigor, relaxed, and active-state conditions. Aliquots of tryptic digestion reactions were then cleaved with chymotrypsin to yield isolated myosin heads and their fragments. Analysis of the decay of myosin heavy-chain bands on SDS gels yielded the rates of myosin cleavage under all conditions and enabled the measurements of actomyosin binding in myofibrils in the presence of MgATP. Using this approach, we detected rigorlike binding of 25 +/- 6% of myosin heads to actin in myofibrils during ATP hydrolysis.  相似文献   

12.
Actin labeled at Gln-41 with dansyl ethylenediamine (DED) via transglutaminase reaction was used for monitoring the interaction of myosin subfragment 1 (S1) with the His-40-Gly-42 site in the 38-52 loop on F-actin. Proteolytic digestions of F-actin with subtilisin and trypsin, and acto-S1 ATPase measurements on heat-treated F-actin revealed that the labeling of Gln-41 had a stabilizing effect on subdomain 2 and the actin filaments. DED on Gln-41 had no effect on the values of K(m) and Vmax of the acto-S1 ATPase and the sliding velocities of actin filaments in the in vitro motility assays. This suggests either that S1 does not bind to the 40-42 site on actin or that such binding is not functionally important. The binding of monoclonal antidansyl IgG to DED-F-actin did not affect acto-S1 binding in the absence of nucleotides, indicating that the 40-42 site does not contribute much to rigor acto-S1 binding. Myosin-induced changes in subdomain 2 on actin were manifested through an increase in the fluorescence of DED-F-actin, a decrease in the accessibility of the probe to collisional quenchers, and a partial displacement of antidansyl IgG from actin by S1. It is proposed that these changes in the 38-52 loop on actin originate from S1 binding to other myosin recognition sites on actin.  相似文献   

13.
The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We present a computational method that predicts a pathway of residues that mediate protein allosteric communication. The pathway is predicted using only a combination of distance constraints between contiguous residues and evolutionary data. We applied this analysis to find pathways of conserved residues connecting the myosin ATP binding site to the lever arm. These pathway residues may mediate the allosteric communication that couples ATP hydrolysis to the lever arm recovery stroke. Having examined pre-stroke conformations of Dictyostelium, scallop, and chicken myosin II as well as Dictyostelium myosin I, we observed a conserved pathway traversing switch II and the relay helix, which is consistent with the understood need for allosteric communication in this conformation. We also examined post-rigor and rigor conformations across several myosin species. Although initial residues of these paths are more heterogeneous, all but one of these paths traverse a consistent set of relay helix residues to reach the beginning of the lever arm. We discuss our results in the context of structural elements and reported mutational experiments, which substantiate the significance of the pre-stroke pathways. Our method provides a simple, computationally efficient means of predicting a set of residues that mediate allosteric communication. We provide a refined, downloadable application and source code (on https://simtk.org) to share this tool with the wider community (https://simtk.org/home/allopathfinder).  相似文献   

15.
The motor protein myosin in association with actin transduces chemical free energy in ATP into work in the form of actin translation against an opposing force. Mediating the actomyosin interaction in myosin is an actin binding site distributed among several peptides on the myosin surface including surface loops contributing to affinity and actin regulation of myosin ATPase. A structured surface loop on beta-cardiac myosin, the cardiac or C-loop, was recently demonstrated to affect myosin ATPase and was indirectly implicated in the actomyosin interaction. The C-loop is a conserved feature of all myosin isoforms with crystal structures, suggesting that it is an essential part of the core energy transduction machinery. It is shown here that proteolytic digestion of the C-loop in beta-cardiac myosin eliminates actin-activated myosin ATPase and reduces actomyosin affinity in rigor more than 100-fold. Studies of C-loop function in smooth muscle myosin were also undertaken using site-directed mutagenesis. Mutagenesis of a single charged residue in the C-loop of smooth muscle myosin alters actomyosin affinity and doubles myosin in vitro motility and actin-activated ATPase velocities, thereby involving a charged region of the loop in the actomyosin interaction. It appears likely that the C-loop is an essential electrostatic binding site for actin involved in modulation of actomyosin affinity and regulation of actomyosin ATPase velocity.  相似文献   

16.
The results of sedimentation studies revealed that “myosin B” extracted from rigor muscle was different from myosin B from fresh muscle; the former contained less contaminating myosin A and less main component but more heavy component than the latter did. The proportion of constitutional myosin A to actin in the former was less than that in the latter.

“Myosin B” from post-rigor muscle was very similar to that from rigor muscle in the sedimentation behaviours.

The extrapolated sedimentation coefficient fresh muscle was 99S.  相似文献   

17.
The internal dynamics and thermal unfolding of fibre bundles prepared from rabbit psoas muscle has been studied in the presence of nucleotides by differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy. Using ADP, adenosine 5'-triphosphate (ATP), AMP.PNP and inorganic phosphate analogue orthovanadate (V(i)), AlF(4)(-) and BeF(3)(-), three intermediate states of the ATP hydrolysis cycle were simulated in glycerinated muscle fibres. In the main transition of the DSC pattern, three overlapping endotherms were detected in rigor, four in strongly as well as weakly binding state of myosin to actin. Deconvolution procedure showed that the transition temperature of 67.5 degrees C was the same for rigor and strong binding state of myosin. In contrast, nucleotide binding induced shift of the melting temperatures of 52 degrees C and 67.5 degrees C, appeared a new fourth peak at 74 and 77 degrees C and produced changes in the calorimetric enthalpies. The changes of the parameters of the peak functions suggest global rearrangements of the internal structure in myosin heads in the intermediate states. In the presence of ADP or ATP plus phosphate analogue orthovanadate or beryllium fluoride, aluminium fluoride, the conventional EPR spectra of spin-labeled muscle fibres showed large changes in the ordering of the probe molecules, and a new distribution of spin labels appeared. ATP plus orthovanadate induced the orientation disorder of myosin heads; the random population of spin labels gave evidence of large local conformational and motional changes in the internal structure of myosin heads. Saturation transfer EPR measurements reported increased rotational mobility of spin labels in the presence of ATP plus phosphate analogues corresponding to weakly binding state of myosin to actin.  相似文献   

18.
The interaction of myosin subfragment 1 (S1) with actin-tropomyosin-troponin (regulated actin) is highly nucleotide dependent. The binding of S1 or S1-ADP (but not S1-ATP nor N,N'-rho-phenylenedimaleimide-modified S1-ATP) to regulated actin activates ATP hydrolysis even in the absence of Ca(2+). Investigations with S1 and S1-ADP have led to the idea that some actin sites are directly blocked toward the binding of S1 either by tropomyosin or troponin. The blocked state is thought to occur only at ionic strengths greater than 50 mM. The question is whether nonactivating S1 binding is blocked under the same conditions. We show that troponin inhibits binding of the nonactivating state, N,N'-rho-phenylenedimaleimide-S1-ATP, to actin but only when tropomyosin is absent. A lag in the rate of binding of activating S1 to actin (an indicator of the blocked state) occurs only in the presence of tropomyosin. Thus, tropomyosin inhibits binding of rigor S1 but not S1-ATP-like states. No evidence for an ionic strength-dependent change in the mechanism of regulation was observed either from measurements of the rate of activating S1 binding or from the equilibrium binding of nonactivating S1 to actin. At all conditions examined, N,N'-rho-phenylenedimaleimide-S1-ATP bound to regulated actin in the absence of Ca(2+). These results support the view of regulation in which tropomyosin movement is an allosteric switch that is modulated by activating myosin binding but that does not function solely by regulating myosin binding.  相似文献   

19.
ATP is required for nucleation of actin filament branches by Arp2/3 complex, but the influence of ATP binding and hydrolysis are poorly understood. We determined crystal structures of bovine Arp2/3 complex cocrystallized with various bound adenine nucleotides and cations. Nucleotide binding favors closure of the nucleotide-binding cleft of Arp3, but no large-scale conformational changes in the complex. Thus, ATP binding does not directly activate Arp2/3 complex but is part of a network of interactions that contribute to nucleation. We compared nucleotide-induced conformational changes of residues lining the cleft in Arp3 and actin structures to construct a movie depicting the proposed ATPase cycle for the actin family. Chemical crosslinking stabilized subdomain 1 of Arp2, revealing new electron density for 69 residues in this subdomain. Steric clashes with Arp3 appear to be responsible for intrinsic disorder of subdomains 1 and 2 of Arp2 in inactive Arp2/3 complex.  相似文献   

20.
Myosin V is a molecular motor shown to move processively along actin filaments. We investigated the properties of the weak binding states of monomeric myosin V containing a single IQ domain (MV 1IQ) to determine if the affinities of these states are increased as compared to conventional myosin. Further, using a combination of non-hydrolyzable nucleotide analogues and mutations that block ATP hydrolysis, we sought to probe the states that are populated during ATP-induced dissociation of actomyosin. MV 1IQ binds actin with a K(d) = 4 microM in the presence of ATP gamma S at 50 mM KCl, which is 10-20-fold tighter than that of nonprocessive class II myosins. Mutations within the switch II region trapped MV 1IQ in two distinct M.ATP states with very different actin binding affinities (K(d) = 0.2 and 2 microM). Actin binding may change the conformation of the switch II region, suggesting that elements of the nucleotide binding pocket will be in a different conformation when bound to actin than is seen in any of the myosin crystal structures to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号