首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mean field analysis of FKBP12 complexes with FK506 and rapamycin has been performed by using structures obtained from molecular docking simulations on a simple, yet robust molecular recognition energy landscape. When crystallographic water molecules are included in the simulations as an extension of the FKBP12 protein surface, there is an appreciable stability gap between the energy of the native FKBP12–FK506 complex and energies of conformations with the “native-like” binding mode. By contrast, the energy spectrum of the FKBP12–rapamycin complex is dense regardless of the presence of the water molecules. The stability gap in the FKBP12–FK506 system is determined by two critical water molecules from the effector region that participate in a network of specific hydrogen bond interactions. This interaction pattern protects the integrity and precision of the composite ligand-protein effector surface in the binary FKBP12–FK506 complex and is preserved in the crystal structure of the FKBP12–FK506–calcineurin ternary complex. These features of the binding energy landscapes provide useful insights into specific and nonspecific aspects of FK506 and rapamycin recognition. Proteins 28:313–324, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Park S  Saven JG 《Proteins》2005,60(3):450-463
Buried solvent molecules are common in the core of globular proteins and contribute to structural stability. Folding necessitates the burial of polar backbone atoms in the protein core, whose hydrogen-bonding capacities should be satisfied on average. Whereas the residues in alpha-helices and beta-sheets form systematic main-chain hydrogen bonds, the residues in turns, coils and loops often contain polar atoms that fail to form intramolecular hydrogen bonds. The statistical analysis of 842 high resolution protein structures shows that well-resolved, internal water molecules preferentially reside near residues without alpha-helical and beta-sheet secondary structures. These buried waters most often form primary hydrogen bonds to main-chain atoms not involved in intramolecular hydrogen bonds, providing strong evidence that hydrating main-chain atoms is a key structural role of buried water molecules. Additionally, the average B-factor of protein atoms hydrogen-bonded to waters is smaller than that of protein atoms forming intramolecular hydrogen bonds, and the average B-factor of water molecules involved in primary hydrogen bonds with main-chain atoms is smaller than the average B-factor of water molecules involved in secondary hydrogen bonds to protein atoms that form concurrent intramolecular hydrogen bonds. To study the structural coupling between internal waters and buried polar atoms in detail we simulated the dynamics of wild-type FKBP12, in which a buried water, Wat137, forms one side-chain and multiple main-chain hydrogen bonds. We mutated E60, whose side-chain hydrogen bonds with Wat137, to Q, N, S or A, to modulate the multiplicity and geometry of hydrogen bonds to the water. Mutating E60 to a residue that is unable to form a hydrogen bond with Wat137 results in reorientation of the water molecule and leads to a structural readjustment of residues that are both near and distant to the water. We predict that the E60A mutation will result in a significantly reduced affinity of FKBP12 for its ligand FK506. The propensity of internal waters to hydrogen bond to buried polar atoms suggests that ordered water molecules may constitute fundamental structural components of proteins, particularly in regions where alpha-helical or beta-sheet secondary structure is not present.  相似文献   

3.
We present a study of FKBP12/FK506 using an electron structure calculation. These calculations employ a novel technique called eCADD on the protein’s full electron structure along with its hydrophobic pocket and the frontier-orbital-perturbation theory. We first obtain the energy bands and orbital coefficients of protein FKBP12. On this basis, we found that the activity atoms and activity residues of FKBP12 were in good agreement with X-ray crystallography experiments. The results indicate that the interactions occur only between the LUMOs of FKBP12 and the HOMO of FK506, not between the HOMOs of FKBP12 and the LUMO of FK506. In other words, the activity sites of protein FKBP12 are located on its LUMOs, not HOMOs. The electron structures of FKBP12/FK506 give us a clearer understanding of their interaction mechanism and will help us design new ligands of FKBP12.  相似文献   

4.
The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway.The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper).  相似文献   

5.
Two FK506 binding proteins of molecular mass 12 kDa (FKBP12) and 13 kDa (FKBP13) have been identified as common cellular receptors of the immunosuppressants FK506 and rapamycin. Here we report the molecular cloning and overexpression of a 25-kDa rapamycin and FK506 binding protein (termed FKBP25) with peptidylprolyl cis-trans-isomerase (PPIase) activity. The amino acid sequence, predicted from the FKBP25 cDNA, shares identity with FKBP12 (44%) and FKBP13 (47%) in the C-terminal 97 amino acids. Unlike either FKBP12 or FKBP13, the nucleotide sequence of FKBP25 contains a number of putative nuclear localization sequences. The PPIase activity of recombinant FKBP25 was comparable with that of FKBP12. The PPIase activity of FKBP25 was far more sensitive to inhibition by rapamycin (IC50 = 50 nM) than FK506 (IC50 = 400 nM). PPIase activity of 100 nM FKBP25 was almost completely inhibited by 150 nM rapamycin while only 90% inhibition was achieved by 4 microM FK506. These data demonstrate that FKBP25 has a higher affinity for rapamycin than for FK506 and suggest that this cellular receptor may be an important target molecule for immunosuppression by rapamycin.  相似文献   

6.
BACKGROUND: The 12 kD FK506 binding protein FKBP12 is a cytosolic receptor for the immunosuppressant drugs FK506 and rapamycin. In addition to its critical role in drug-induced T-cell immunosuppression, FKBP12 associates physiologically with ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors, regulating their ability to flux calcium. We investigated a role for FKBP12 in male reproductive physiology on the basis of our identification of extremely high levels of [3H]FK506 binding in male reproductive tissues. MATERIALS AND METHODS: [3H]FK506 binding studies were performed to identify tissues enriched with FK506 binding sites. The abundant [3H]FK506 binding sites identified in the male reproductive tract were localized by [3H]FK506 autoradiography. FK506 affinity chromatography was employed to purify FKBP from epididymal fluid. Anti-FKBP12 Western analysis was used to confirm the identity of the purified FKBP. The binding of exogenous FKBP12 to sperm was evaluated by [32P]FKBP12 binding studies and [33P]FKBP12 autoradiography. The effect of recombinant FKBP12 on sperm motility was investigated using a Hamilton Thorne motility analyzer. RESULTS: Male reproductive tissues contained high levels of [3H]FK506 binding. The localization of [3H]FK506 binding sites to the tubular epithelium of the caput epididymis and the lumen of the cauda and vas deferens suggested that FKBP is released in the male reproductive tract. FKBP12 was purified from epididymal plasma by FK506 affinity chromatography. Radiolabeled FKBP12 specifically bound to immature but not mature sperm. In sperm motility studies, FKBP12-treated caput sperm exhibited double the curvilinear velocity of untreated controls. CONCLUSIONS: High levels of FKBP12 are released in the male reproductive tract and specifically associate with maturing sperm. Recombinant FKBP12 enhances the curvilinear velocity of immature sperm, suggesting a role for FKBP12 in motility initiation. The highest concentrations of soluble FKBP12 in the male reproductive tract occur in the lumen of the vas deferens, a site of sperm storage and the conduit for ejaculated sperm. Preservation of mammalian sperm for reproductive technologies may be optimized by supplementing incubation or storage media with FKBP12.  相似文献   

7.
Docking of FK506, rapamycin, and L-685,818 into their receptor, FKBP12, suggests that unlike the respective structures determined by X-ray crystallography, the uncomplexed FKBP12 structures determined by NMR may not be directly usable to identify high affinity ligands by docking studies for computational drug screening. In view of the resolution of the experimentally determined structures of FKBP12 and relatively small difference of the receptor binding sites between the complexed and uncomplexed states, it is unclear if the conformational induction mechanism is relevant to the binding of FKBP12 with its ligands. Alternatively, we advocate a conformation selection mechanism fundamentally akin to a mechanism proposed by Burgen. This mechanism better explains the experimental and calculated results for the binding of FKBP12 with FK506. It emphasizes that both guest and host select their most compatible preformed conformers to effect binding, and that the observed free energy of binding is a sum of the free energy change in complexation of the two most compatible conformers and the free energy changes in conversion of the Boltzmann-weighted principal conformers to the most compatible conformers. Conceptually, this mechanism represents one physical or nonphysical path of a thermodynamic cycle that is closed by the other path represented by the conformational induction mechanism, which can also be physical or nonphysical; it provides a theoretical means to estimate the affinity of the guest to the host with the experimentally available 3D structures of the two partners.  相似文献   

8.
Kotaka M  Ye H  Alag R  Hu G  Bozdech Z  Preiser PR  Yoon HS  Lescar J 《Biochemistry》2008,47(22):5951-5961
The emergence of multi-drug-resistant strains of Plasmodium parasites has prompted the search for alternative therapeutic strategies for combating malaria. One possible strategy is to exploit existing drugs as lead compounds. FK506 is currently used in the clinic for preventing transplant rejection. It binds to a alpha/beta protein module of approximately 120 amino acids known as the FK506 binding domain (FKBD), which is found in various organisms, including human, yeast, and Plasmodium falciparum (PfFKBD). Antiparasitic effects of FK506 and its analogues devoid of immunosuppressive activities have been demonstrated. We report here the crystallographic structure at 2.35 A resolution of PfFKBD complexed with FK506. Compared to the human FKBP12-FK506 complex reported earlier, the structure reveals structural differences in the beta5-beta6 segment that lines the FK506 binding site. The presence in PfFKBD of Cys-106 and Ser-109 (substituting for His-87 and Ile-90, respectively, in human FKBP12), which are 4-5 A from the nearest atom of the FK506 compound, suggests possible routes for the rational design of analogues of FK506 with specific antiparasitic activity. Upon ligand binding, several conformational changes occur in PfFKBD, including aromatic residues that shape the FK506 binding pocket as shown by NMR studies. A microarray analysis suggests that FK506 and cyclosporine A (CsA) might inhibit parasite development by interfering with the same signaling pathways.  相似文献   

9.
The mechanism of FK506 immunosuppression has been proposed to proceed by formation of a tight-binding complex with the intracellular 12-kDa FK506-binding protein (FKBP12). The FK506-FKBP12 complex then acts as a specific high-affinity inhibitor of the intracellular protein phosphatase PP2B (calcineurin), interrupting downstream dephosphorylation events required for T-cell activation. Site-directed mutagenesis of many of the surface residues of FKBP12 has no significant effect on its affinity for calcineurin. We have identified, however, three FKBP12 surface residues (Asp-37, Arg-42, and His-87) proximal to a solvent-exposed segment of bound FK506 that may be direct contacts in the calcineurin complex. Site-directed mutagenesis of two of these residues decreases the affinity of FKBP12-FK506 for calcineurin (Ki) from 6 nM for wild-type FKBP12 to 3.7 microM for a R42K/H87V double mutant, without affecting the peptidylprolyl isomerase activity or FK506 affinity of the mutant protein. These FKBP12 mutations along with several substitutions on FK506 known to affect calcineurin binding form a roughly 100-A2 region of the FKBP12-FK506 complex surface that is likely to be within the calcineurin binding site.  相似文献   

10.
FKBP52   总被引:5,自引:0,他引:5  
The large molecular-weight immunophilin, FKBP52, is a known target of the immunosuppressive drug FK506. FKBP52 exhibits peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is inhibited by the binding of FK506--properties that it shares with the smaller but better-studied immunophilin, FKBP12. Unlike FKBP12, however, FKBP52 does not mediate the immunosuppressive actions of FK506 and, due to its larger size, contains additional numerous functional domains. One such structure is a series of tetratricopeptide repeat (TPR) domains, which serve as binding sites for the ubiquitous and abundant molecular chaperone, Hsp90. It is this property as a TPR protein that best characterizes the known cellular roles of FKBP52. Here, we review the structural features of FKBP52 and relate them to the evolving and diverse functions of this protein. Although the most recognized role of FKBP52 is in regulation of steroid receptor signaling, other less well-known functions are also discussed.  相似文献   

11.
Mechanism of osteogenic induction by FK506 via BMP/Smad pathways   总被引:1,自引:0,他引:1  
FK506 is an immunosuppressant that exerts effects by binding to FK506-binding protein 12 (FKBP12). Recently, FK506 has also been reported to promote osteogenic differentiation when administered locally or in vitro in combination with bone morphogenetic proteins (BMPs), although the underlying mechanism remains unclarified. The present study initially showed that FK506 alone at a higher concentration (1muM) induced osteogenic differentiation of mesenchymal cell lines, which was suppressed by adenoviral introduction of Smad6. FK506 rapidly activates the BMP-dependent Smads in the absence of BMPs, and the activation was blocked by Smad6. Overexpression of FKBP12, which was reported to block the ligand-independent activation of BMP type I receptor A (BMPRIA), suppressed Smad signaling induced by FK506, but not that induced by BMP2. BMPRIA and FKBP12 bound to each other, and this binding was suppressed by FK506. These data suggest that FK506 promotes osteogenic differentiation by activating BMP receptors through interacting with FKBP12.  相似文献   

12.
The emergence of drug‐resistant malaria parasites is the major threat to effective malaria control, prompting a search for novel compounds with mechanisms of action that are different from the traditionally used drugs. The immunosuppressive drug FK506 shows an antimalarial activity. The mechanism of the drug action involves the molecular interaction with the parasite target proteins PfFKBP35 and PvFKBP35, which are novel FK506 binding protein family (FKBP) members from Plasmodium falciparum and Plasmodium vivax, respectively. Currently, molecular mechanisms of the FKBP family proteins in the parasites still remain elusive. To understand their functions, here we have determined the structures of the FK506 binding domain of Plasmodium vivax (PvFKBD) in unliganded form by NMR spectroscopy and in complex with FK506 by X‐ray crystallography. We found out that PvFKBP35 exhibits a canonical FKBD fold and shares kinetic profiles similar to those of PfFKBP35, the homologous protein in P. falciparum, indicating that the parasite FKBP family members play similar biological roles in their life cycles. Despite the similarity, differences were observed in the ligand binding modes between PvFKBD and HsFKBP12, a human FKBP homolog, which could provide insightful information into designing selective antimalarial drug against the parasites.  相似文献   

13.
The consequences of site-directed mutagenesis experiments are often anticipated by empirical rules regarding the expected effects of a given amino acid substitution. Here, we examine the effects of "conservative" and "nonconservative" substitutions on the X-ray crystal structures of human recombinant FKBP12 mutants in complex with the immunosuppressant drug FK506 (tacrolimus). R42K and R42I mutant complexes show 110-fold and 180-fold decreased calcineurin (CN) inhibition, respectively, versus the native complex, yet retain full peptidyl prolyl isomerase (PPIase) activity, FK506 binding, and FK506-mediated PPIase inhibition. Interestingly, the structure of the R42I mutant complex is better conserved than that of the R42K mutant complex when compared to the native complex structure, within both the FKBP12 protein and FK506 ligand regions of the complexes, and with respect to temperature factors and RMS coordinate differences. This is due to compensatory interactions mediated by two newly ordered water molecules in the R42I complex structure, molecules that act as surrogates for the missing arginine guanidino nitrogens of R42. The absence of such surrogate solvent interactions in the R42K complex leads to some disorder in the so-called "40s loop" that encompasses the substituent. One rationalization proposed for the observed loss in CN inhibition in these R42 mutant complexes invokes indirect effects leading to a misorientation of FKBP12 and FK506 structural elements that normally interact with calcineurin. Our results with the structure of the R42I complex in particular suggest that the observed loss of CN inhibition might also be explained by the loss of a specific R42-mediated interaction with CN that cannot be mimicked effectively by the solvent molecules that otherwise stabilize the conformation of the 40s loop in that structure.  相似文献   

14.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   

15.
16.
SIB1 FKBP22 is a peptidyl prolyl cis–trans isomerase (PPIase) member from a psychrotrophic bacterium, Shewanella sp. SIB1, consisting of N- and C-domains responsible for dimerization and catalytic PPIase activity, respectively. This protein was assumed to be involved in cold adaptation of SIB1 cells through its dual activity of PPIase activity and chaperone like-function. Nevertheless, the catalytic inhibition by FK506 and its substrate specificity remain unknown. Besides, ability of SIB1 FKBP22 to inhibit phosphatase activity of calcinuerin is also interesting to be studied since it may reflect wider cellular functions of SIB1 FKBP22. In this study, we found that wild type (WT) SIB1 FKBP22 bound to FK506 with IC50 of 77.55 nM. This value is comparable to that of monomeric mutants (NNC-FKBP22, C-domain+ and V37R/L41R mutants), yet significantly higher than that of active site mutant (R142A). In addition, WT SIB1 FKBP22 and monomeric variants were found to prefer hydrophobic residues preceding proline. Meanwhile, R142A mutant has wider preferences on bulkier hydrophobic residues due to increasing hydrophobicity and binding pocket space. Surprisingly, in the absence of FK506, SIB1 FKBP22 and its variants inhibited, with the exception of N-domain, calcineurin phosphatase activity, albeit low. The inhibition of SIB1 FKBP22 by FK506 is dramatically increased in the presence of FK506. Altogether, we proposed that local structure at substrate binding pocket of C-domain plays crucial role for the binding of FK506 and peptide substrate preferences. In addition, C-domain is essential for inhibition, while dimerization state is important for optimum inhibition through efficient binding to calcineurin.  相似文献   

17.
Multiple intracellular receptors of the FK506 binding protein (FKBP) family of peptidylprolyl cis/trans-isomerases are potential targets for the immunosuppressive drug FK506. Inhibition of the protein phosphatase calcineurin (CaN), which has been implicated in the FK506-mediated blockade of T cell proliferation, was shown to involve a gain of function in the FKBP12/FK506 complex. We studied the potential of six human FKBPs to contribute to CaN inhibition by comparative examination of inhibition constants of the respective FK506/FKBP complexes. Interestingly, these FKBPs form tight complexes with FK506, exhibiting comparable dissociation constants, but the resulting FK506/FKBP complexes differ greatly in their affinity for CaN, with IC50 values in the range of 0.047-17 microM. The different capacities of FK506/FKBP complexes to affect CaN activity are partially caused by substitutions corresponding to the amino acid side chains K34 and I90 of FKBP12. Only the FK506 complexes of FKBP12, FKBP12.6, and FKBP51 showed high affinity to CaN; small interfering RNA against these FKBP allowed defining the contribution of individual FKBP in an NFAT reporter gene assay. Our results allow quantitative correlation between FK506-mediated CaN effects and the abundance of the different FKBPs in the cell.  相似文献   

18.
M E Cardenas  R S Muir  T Breuder    J Heitman 《The EMBO journal》1995,14(12):2772-2783
The immunosuppressive complexes cyclophilin A-cyclosporin A (CsA) and FKBP12-FK506 inhibit calcineurin, a heterodimeric Ca(2+)-calmodulin-dependent protein phosphatase that regulates signal transduction. We have characterized CsA- or FK506-resistant mutants isolated from a CsA-FK506-sensitive Saccharomyces cerevisiae strain. Three mutations that confer dominant CsA resistance are single amino acid substitutions (T350K, T350R, Y377F) in the calcineurin A catalytic subunit CMP1. One mutation that confers dominant FK506 resistance alters a single residue (W430C) in the calcineurin A catalytic subunit CMP2. In vitro and in vivo, the CsA-resistant calcineurin mutants bind FKBP12-FK506 but have reduced affinity for cyclophilin A-CsA. When introduced into the CMP1 subunit, the FK506 resistance mutation (W388C) blocks binding by FKBP12-FK506, but not by cyclophilin A-CsA. Co-expression of CsA-resistant and FK506-resistant calcineurin A subunits confers resistance to CsA and to FK506 but not to CsA plus FK506. Double mutant calcineurin A subunits (Y377F, W388C CMP1 and Y419F, W430C CMP2) confer resistance to CsA, to FK506 and to CsA plus FK506. These studies identify cyclophilin A-CsA and FKBP12-FK506 binding targets as distinct, highly conserved regions of calcineurin A that overlap the binding domain for the calcineurin B regulatory subunit.  相似文献   

19.
The structure of a recently reported neurotrophic ligand, 3-(3-pyridyl)-1-propyl(2S)-1-(3,3-dimethyl-1, 2-dioxopentyl)-2-pyrrolidinecarboxylate, in complex with FKBP12 was determined using heteronuclear NMR spectroscopy. The inhibitor exhibits a binding mode analogous to that observed for the macrocycle FK506, used widely as an immunosuppressant, with the prolyl ring replacing the pipecolyl moiety and the amide bond in a trans conformation. However, fewer favourable protein-ligand interactions are detected in the structure of the complex, suggesting weaker binding compared with the immunosuppressant drug. Indeed, a micromolar dissociation constant was estimated from the NMR ligand titration profile, in contrast to the previously published nanomolar inhibition activity. Although the inhibitor possesses a remarkable structural simplicity with respect to FK506, 15N relaxation studies show that it induces similar effects on the protein dynamics, stabilizing the conformation of solvent-exposed residues which are important for mediating the interaction of immunophilin/ligand complexes with molecular targets and potentially for the transmission of the neurotrophic action of FKBP12 inhibitors.  相似文献   

20.
The FK506-binding protein 51 (FKBP51) is an Hsp90-associated co-chaperone which regulates steroid receptors and kinases. In pancreatic cancer cell lines, FKBP51 was shown to recruit the phosphatase PHLPP to facilitate dephosphorylation of the kinase Akt, which was associated with reduced chemoresistance. Here we show that in addition to FKBP51 several other members of the FKBP family bind directly to Akt. FKBP51 can also form complexes with other AGC kinases and mapping studies revealed that FKBP51 interacts with Akt via multiple domains independent of their activation or phosphorylation status. The FKBP51-Akt1 interaction was not affected by FK506 analogs or Akt active site inhibitors, but was abolished by the allosteric Akt inhibitor VIII. None of the FKBP51 inhibitors affected AktS473 phosphorylation or downstream targets of Akt. In summary, we show that FKBP51 binds to Akt directly as well as via Hsp90. The FKBP51-Akt interaction is sensitive to the conformation of Akt1, but does not depend on the FK506-binding pocket of FKBP51. Therefore, FKBP inhibitors are unlikely to inhibit the Akt-FKBP-PHLPP network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号