首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李学璐  李芳 《中国微生态学杂志》2012,24(10):958-959,961
通过人类错配修复基因( hMLHl)启动子CpG岛甲基化与微卫星不稳定性(MSI)的分析,探讨癌症发病的机制.错配修复基因hMLH1启动子CpG岛甲基化是hMLH1基因失活的重要机制,而hMLH1的表达失活则可导致MSI的产生,促进癌症的发生.根据一系列研究得出结论,在肿瘤组织中hMLH1基因启动子CpG岛甲基化和微卫星不稳定(MSI)有显著相关性,并在癌症早期发生、发展过程中起重要作用.因此临床检测hMLH1基因启动子CpG岛甲基化及微卫星不稳定可能成为癌症鉴别诊断、评价预后、指导化疗的分子标志物之一.  相似文献   

2.
3.
4.
5.
Silencing of the O (6)-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, is involved in carcinogenesis. Recent studies have focused on DNA hypermethylation of the promoter CpG island. However, cases showing silencing with DNA hypomethylation certainly exist, and the mechanism involved is not elucidated. To clarify this mechanism, we examined the dynamics of DNA methylation, histone acetylation, histone methylation, and binding of methyl-CpG binding proteins at the MGMT promoter region using four MGMT negative cell lines with various extents of DNA methylation. Histone H3K9 di-methylation (H3me2K9), not tri-methylation, and MeCP2 binding were commonly seen in all MGMT negative cell lines regardless of DNA methylation status. 5Aza-dC, but not TSA, restored gene expression, accompanied by a decrease in H3me2K9 and MeCP2 binding. In SaOS2 cells with the most hypomethylated CpG island, 5Aza-dC decreased H3me2K9 and MeCP2 binding with no effect on DNA methylation or histone acetylation. H3me2K9 and DNA methylation were restricted to in and around the island, indicating that epigenetic modification at the promoter CpG island is critical. We conclude that H3me2K9 and MeCP2 binding are common and more essential for MGMT silencing than DNA hypermethylation or histone deacetylation. The epigenetic mechanism leading to silent heterochromatin at the promoter CpG island may be the same in different types of cancer irrespective of the extent of DNA methylation.  相似文献   

6.
The zebrafish no tail gene (ntl) is indispensable for the formation of the notochord and the tail structure. Here we showed that de novo DNA methylation occurred at the CpG island of ntl. The methylation started at the segmentation stage and continued after the larval stage. However, it occurred predominantly between 14 and 48 h postfertilization, which overlaps the period in which ntl expression disappears in the notochord and the tailbud. This inverse correlation, together with the methylation-associated formation of an inaccessible chromatin structure at the ntl CpG island region, suggested the involvement of the de novo methylation in ntl repression. Since no changes in methylation patterns were observed at the CpG islands of four other zebrafish genes, there must be a mechanism in zebrafish for specific methylation of the ntl CpG island.  相似文献   

7.
8.
X chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation?pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development.  相似文献   

9.
The survival of cardiac myocytes under different physiological and pathological conditions presents pressing problem. mdx mice cardiac myocytes are a promising model of cell survival under condition of oxidative stress. Our early results have shown that some part of mdx mice cardiomyocytes is in early stage of apoptosis (Kazakov, Mikhailov, 2001). But the development of cell death with loss of apoptotical cardiac myocytes occurs only after dynamical stress (bathing during 5 min) (Mikhailov et al., 2001). DNA endonuclease activity in the myocardium and low level of cardiac myocytes death during usual being of mdx mice allowed us to suggest DNA repair to be involved in the survival of mdx mice cardiac myocytes (Mikhailov et al., 2003). To confirm the suggestion we have studied the dynamics of formation and elimination of double strand DNA breaks in mdx myocardium cells after 5 min bathing at 12 degrees C. To visualise double strand DNA breaks formation cell nuclei were stained by monoclonal antibodies to phosphorylated H2Ax histone and to mouse PAP. Double staining with monoclonal anti-H2Ax antibodies and monoclonal anti-a-actin antibodies were used to separate cardiac myocytes from other myocardial cell types. The results showed that during 40 min after stress the deal of H2Ax-positive nuclei in mdx myocardium cells grew up to 41.7 +/- 11.4 % as compared with the initial control level of 6.7 +/- 0.2 %. The number of H2Ax-positive nuclei in these cells decreased after 24 h to 5.7 +/- 0.2 %. The quantity of tagged myocardium cell nuclei in C57B1/6 mice after stress was negligible and did not go beyond 0.01%. Dynamical stress also induced the increase in the rate of 3H-Thymidine incorporation by mdx mice cardiac myocytes from 0.3 +/- 0.3 up to 2.9 +/- 0.5 %. There was not change in the rate of 3H-Thymidine incorporation by cardiac myocytes in C57B1/6 mice. The numbers of labelled nuclei before and after stress were 0.2 and 0.3 %, correspondingly. The number of 3H-Thymidine labelled mdx cardiac myocytes fell down up to 0.4 +/- 0.2 % within 24 h after stress; the level of labelled C57B1/6 cardiac myocytes did not change. We have concluded that 3H-Thymidine incorporation into cardiac myocytes nuclei and staining of these nuclei by monoclonal antiboies phosphorylated H2Ax histone after stress demonstrate rather DNA repair than cardiomyocytes entry into the cell cycle.  相似文献   

10.
11.
Ochiai H  Harashima H  Kamiya H 《FEBS letters》2006,580(3):918-922
The intranuclear disposition of exogenous DNA is highly important for the therapeutic effects of the administrated DNA. Naked luciferase-plasmid DNA was delivered into mouse liver by a hydrodynamics-based injection, and the amounts of intranuclear plasmid DNA, luciferase, and its mRNA were quantitated at various time points. Methylation of the promoter of the luciferase gene was also analyzed. Expression efficiency from one copy of the exogenous DNA dramatically decreased over time, and the DNA was methylated and degraded into fragments. Unexpectedly, methylation of the intact plasmid DNA was low and did not increase over time. Rather, the fragmented DNA was methylated more frequently than the intact plasmid. These results suggest that the CpG methylation and the degradation of exogenous DNA, and its 'silencing', occurred in parallel in the nucleus.  相似文献   

12.
13.
14.
15.
16.
The study on DNA methylation pattern in different human tissues attracts increasing interest nowadays, but a systematic analysis of CpG island methylation pattern between both somatic tissues and gametocyte is still lacking. In this work, we analyzed the CpG island methylation data of sperm and other 11 somatic tissues from Human Epigenome Project, and found that the CpG island methylation profiles are highly correlated between somatic tissues, while the methylation profile in sperm is quite distinct. Furthermore, we observed that in the six tissues investigated, there is no obvious correlation between the methylation level of promoter CpG islands and corresponding gene expression across different tissues.  相似文献   

17.
18.
K D Mills  D A Sinclair  L Guarente 《Cell》1999,97(5):609-620
The yeast Sir2/3/4p complex is found in abundance at telomeres, where it participates in the formation of silent heterochromatin and telomere maintenance. Here, we show that Sir3p is released from telomeres in response to DNA double-strand breaks (DSBs), binds to DSBs, and mediates their repair, independent of cell mating type. Sir3p relocalization is S phase specific and, importantly, requires the DNA damage checkpoint genes MEC1 and RAD9. MEC1 is a homolog of ATM, mutations in which cause ataxia telangiectasia (A-T), a disease characterized by various neurologic and immunologic abnormalities, a predisposition for cancer, and a cellular defect in repair of DSBs. This novel mode by which preformed DNA repair machinery is mobilized by DNA damage sensors may have implications for human diseases resulting from defective DSB repair.  相似文献   

19.
20.
Our group has initiated experiments to epigenetically profile CpG island hypermethylation in genomic DNA from tissue specimens of head and neck squamous cell carcinoma (HNSCC) using a microarray of 12,288 CpG island clones. Our technique, known as a methylation-specific restriction enzyme (MSRE) analysis, is a variation of the differential methylation hybridization (DMH) technique, in that it is not an array comparison of two DNA samples using methylation-specific restriction enzymes. Instead, it is a comparison of a single DNA sample's response to a methylation-sensitive restriction enzyme (HpaII) and its corresponding methylation-insensitive isoschizomer (MspI). Estimation of the reproducibility of this microarray assay by intraclass correlation (ICC) demonstrated that in four replicate experiments for three tumor specimens, the ICC observed for a given tumor specimen ranged from 0.68 to 0.85 without filtering of data. Repeated assays achieved 87% concordance or greater for all tumors after filtering of array data by fluorescence intensity. We utilized hierarchical clustering on a population of 37 HNSCC samples to cluster tumor samples with similar DNA methylation profiles. Supervised learning techniques are now being utilized to allow us to identify associations between specific epigenetic signatures and clinical parameters. Such techniques will allow us to identify select groups of CpG island loci that could be used as epigenetic markers for both diagnosis and prognosis in HNSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号