首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cia5 is a locus on rat chromosome 10 which regulates the severity of collagen- and pristane-induced arthritis (CIA and PIA). To refine the region toward positional identification, Cia5 subcongenic strains were generated and studied in PIA and CIA. The protective effect of the telomeric locus Cia5a was confirmed in both models. A second arthritis severity locus (Cia5d) was identified within the most centromeric portion of Cia5. DA.F344(Cia5d) rats had a significantly lower median arthritis severity index in PIA, but not in CIA, compared with DA. On histologic analyses DA.F344(Cia5a) and DA.F344(Cia5d) congenics with PIA preserved a nearly normal joint architecture compared with DA, including significant reduction in synovial hyperplasia, pannus, angiogenesis, inflammatory infiltration, bone and cartilage erosions. Cia5 and Cia5a synovial levels of IL-1beta mRNA were reduced. Although both DA.F344(Cia5) and DA.F344(Cia5a) rats were protected in CIA, the arthritis scores of DA.F344(Cia5) were significantly higher than those of DA.F344(Cia5a), suggesting the existence of a third locus where F344-derived alleles centromeric from Cia5a contribute to increased arthritis severity. The existence of the third locus was further supported by higher levels of autoantibodies against rat type II collagen in DA.F344(Cia5) congenics compared with DA.F344(Cia5a). Our results determined that Cia5 contains three major arthritis severity regulatory loci regulating central events in the pathogenesis of arthritis, and differentially influencing CIA and PIA. These loci are syntenic to regions on human chromosomes 17q and 5q implicated in the susceptibility to rheumatoid arthritis, suggesting that the identification of these genes will be relevant to human disease.  相似文献   

2.
Neutrophils are required for the development of arthritis, and their migration into the synovial tissue coincides with the onset of clinical disease. Synovial neutrophil numbers also correlate with rheumatoid arthritis disease activity and severity. We hypothesized that certain arthritis severity genes regulate disease via the regulation of neutrophil migration into the joint. This hypothesis was tested in the synovial-like air pouch model injected with carrageenan using arthritis-susceptible DA and arthritis-resistant F344 rats. DA had nearly 3-fold higher numbers of exudate neutrophils compared with F344 (p < 0.001). Five DA.F344(QTL) strains congenic for severity loci and protected from autoimmune arthritis were studied. Only DA.F344(Cia4) (chromosome 7) and DA.F344(Cia6) (chromosome 8) congenics had significantly lower exudate neutrophil counts compared with DA. TNF-alpha levels were 2.5-fold higher in DA exudates as compared with F344 exudates, and that difference was accounted for by the Cia4 locus. Exudate levels of NO, a known inhibitor of neutrophil chemotaxis, were higher in F344, compared with DA, and that difference was accounted for by Cia6. This is the first time that non-MHC autoimmune arthritis loci are found to regulate three central components of the innate immune response implicated in disease pathogenesis, namely neutrophil migration into an inflammatory site, as well as exudate levels of TNF-alpha and NO. These observations underscore the importance of identifying the Cia4 and Cia6 genes, and suggest that they should generate useful novel targets for development of new therapies.  相似文献   

3.
Rat Chromosome 10 (RNO10) harbors Cia5, a non-MHC quantitative trait locus (QTL) that regulates the severity of type II collagen-induced arthritis (CIA) in DAxF344 and DAxBN F2 rats. CIA is an animal model with many features that resemble rheumatoid arthritis. To facilitate analysis of Cia5 independently of the other CIA regulatory loci on other chromosomes, DA recombinant QTL speed congenic rats, DA.F344(Cia5), were generated. These QTL congenic rats have a large chromosomal segment containing Cia5 (interval size < or =80.1 cM) from CIA-resistant F344 rats introgressed into their genome. Phenotypic analyses of these rats for susceptibility and severity of CIA confirmed that Cia5 is an important disease-modifying locus. CIA severity was significantly lower in the Cia5 congenic rats than in DA controls. We also generated DA Cia5 speed sub-congenic rats, DA.F344(Cia5a), which had a smaller segment of the F344 genome, Cia5a, comprising only the distal q-telomeric end (interval size < or = 22.5 cM) of Cia5, introgressed into their genome. DA.F344(Cia5a) sub-congenic rats also exhibited reduced CIA disease severity compared with the parental DA rats. The regulatory effects in both congenic strains were sex influenced. The disease-ameliorating effect of the larger fragment, Cia5, was greater in males than in females, but the effect of the smaller fragment, Cia5a, was greater in females. We also present an improved genetic linkage map covering the Cia5/Cia5a region, which we have integrated with two rat radiation hybrid maps. Comparative homology analysis of this genomic region with mouse and human chromosomes was also undertaken. Regulatory loci for multiple autoimmune/inflammatory diseases in rats (RNO10), mice (MMU11), and humans (HSA17 and HSA5q23-q31) map to chromosomal segments homologous to Cia5 and Cia5a.  相似文献   

4.
T cells have a central role in the pathogenesis of autoimmune arthritis, and several abnormalities in T cell homeostasis have been described in rheumatoid arthritis (RA). We hypothesized that T cell phenotypes, including frequencies of different subsets of T regulatory (Treg) cells and in vitro functional responses could be genetically determined. Furthermore, we considered that the genetic contribution would be accounted for by one of the arthritis regulatory quantitative trait loci (QTL), thus providing novel clues to gene mode of action. T cells were isolated from thymus, peripheral blood, and spleen from DA (arthritis-susceptible) and ACI and F344 (arthritis-resistant) strains and from F344.DA(Cia1), DA.F344(Cia5a), and DA.F344(Cia5d) rats congenic for arthritis QTL. T cell subpopulations differed significantly between DA, F344, and ACI. DA rats had an increased frequency of CD4(+) cells, and a reduction in CD8(+) and CD4(+)CD45RC(|o) Treg cells, compared with F344. The differences in CD4/CD8 and CD4(+)CD45RC(|o) Treg cells were accounted for by Cia5a. DA rats also had a reduced frequency of CD8(+)CD45RC(|o) CD25(+) Treg cells compared with F344, and that difference was explained by Cia5d. DA rats also had a significantly lower frequency of CD4(+)CD25(+) and CD8(+)CD25(+) thymocytes, and of peripheral blood CD8(+)CD45RC(|o) Treg cells, compared with F344 rats, and that difference was accounted for by the MHC. This is the first identification of arthritis severity QTL regulating numbers of CD4(+)CD45RC(|o) (Cia5a) and CD8(+)CD45RC(|o) CD25(+) (Cia5d) Treg cells. The MHC effect on CD8(+) Treg cells and CD25(+) thymocytes raises a novel potential explanation for its association with arthritis.  相似文献   

5.

Introduction

Collagen-induced arthritis (CIA) in mice is a commonly used experimental model for rheumatoid arthritis (RA). We have previously identified a significant quantitative trait locus denoted Cia40 on chromosome 11 that affects CIA in older female mice. This locus colocalizes with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA.

Methods

Congenic B10.Q mice carrying an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded.

Results

Significant effects on onset, incidence, severity, and anti-CII antibody titers were observed in female mice carrying a heterozygous congenic Cia40/Pregq2 fragment of NFR/N origin, containing one or more polymorphic genes. Congenic male mice did not show increased incidence of CIA, but males carrying a heterozygous fragment showed a significant increase in severity in comparison with wildtype B10.Q males (littermates).

Conclusion

The Cia40/Pregq2 locus at chromosome 11 contains one or more polymorphic genes of NFR/N origin that significantly influence both incidence and severity of CIA in heterozygous congenic mice of the B10.Q strain. The major polymorphic candidate genes for the effects on CIA are Cd79b, Abca8a, and Map2k6. The congenic fragment also contains polymorphic genes that affect reproductive behavior and reproductive success. The Sox9 gene, known to influence sex reversal, is a candidate gene for the reproductive phenotype.  相似文献   

6.
 Autoimmune diseases, such as rheumatoid arthritis, Crohn's disease, and multiple sclerosis, are regulated by multiple genes. Major histocompatibility complex (MHC) genes have the strongest effects, but non-MHC genes also contribute to disease susceptibility/severity. In this paper, we describe a new non-MHC quantitative trait locus, Cia8, on rat Chromosome (Chr) 7 that controls collagen-induced arthritis severity in F2 progeny of DA and F344 inbred rats, and present an updated localization of Cia4 on the same chromosome. We also describe the location of mouse and human genes, orthologous to the genes in the genomic intervals containing Cia4 and Cia8, and provide evidence that the segment of rat Chr 7 containing Cia4 and Cia8 is homologous to segments of mouse Chr 10 and 15 and human Chr 8, 12, and 19. Received: 1 November 1998 / Revised: 24 January 1999  相似文献   

7.
Pulmonary infection is a major cause of mortality and morbidity, and the magnitude of the lung inflammatory response correlates with patient survival. Previously, we have shown that neutrophil migration into joints is regulated by arthritis severity quantitative trait loci (QTLs). However, it is unclear whether these QTLs contribute to the regulation of lung inflammation in pneumonias. Therefore, to more clearly define the factors regulating acute inflammatory responses in the lung, we examined two inbred rat strains, DA and F344, that differ in these QTLs and their susceptibility to joint inflammation. Staphylococcal cell wall components lipoteichoic acid (LTA) and peptidoglycan (PGN), administered intratracheally, significantly increased the numbers of neutrophils retrieved in the bronchoalveolar lavage fluid (BALF). F344 had approximately 10-fold more neutrophils in the BALF compared with DA (P < 0.001) and higher BALF concentrations of total protein, tumor necrosis factor-α and macrophage inflammatory protein 2. LTA/PGN administration in DA×F344 congenic strains (Cia3d, Cia4, Cia5a, and Cia6) resulted in inflammation similar to that in DA, demonstrating that the genes responsible for the differences in pulmonary inflammation are not contained within the chromosomal intervals carried by these congenic strains. Alveolar macrophages (AMs) isolated from na?ve F344 stimulated in vitro with LTA/PGN produced significantly higher levels of keratinocyte-derived chemokine and macrophage inflammatory protein 2 than alveolar macrophages from DA rats. The differences were related to differential mitogen-activated protein kinase phosphorylation. We conclude that the factors contributing to inflammation can be site and challenge dependent. A better understanding of site-specific inflammation may lead to more effective treatment of acute lung inflammation and injury.  相似文献   

8.

Introduction  

Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins.  相似文献   

9.
Liu Y  Mu R  Wang S  Long L  Liu X  Li R  Sun J  Guo J  Zhang X  Guo J  Yu P  Li C  Liu X  Huang Z  Wang D  Li H  Gu Z  Liu B  Li Z 《Arthritis research & therapy》2010,12(6):R210-13

Introduction

Rheumatoid arthritis (RA) is a T-cell-mediated systemic autoimmune disease, characterized by synovium inflammation and articular destruction. Bone marrow mesenchymal stem cells (MSCs) could be effective in the treatment of several autoimmune diseases. However, there has been thus far no report on umbilical cord (UC)-MSCs in the treatment of RA. Here, potential immunosuppressive effects of human UC-MSCs in RA were evaluated.

Methods

The effects of UC-MSCs on the responses of fibroblast-like synoviocytes (FLSs) and T cells in RA patients were explored. The possible molecular mechanism mediating this immunosuppressive effect of UC-MSCs was explored by addition of inhibitors to indoleamine 2,3-dioxygenase (IDO), Nitric oxide (NO), prostaglandin E2 (PGE2), transforming growth factor β1 (TGF-β1) and interleukin 10 (IL-10). The therapeutic effects of systemic infusion of human UC-MSCs on collagen-induced arthritis (CIA) in a mouse model were explored.

Results

In vitro, UC-MSCs were capable of inhibiting proliferation of FLSs from RA patients, via IL-10, IDO and TGF-β1. Furthermore, the invasive behavior and IL-6 secretion of FLSs were also significantly suppressed. On the other hand, UC-MSCs induced hyporesponsiveness of T cells mediated by PGE2, TGF-β1 and NO and UC-MSCs could promote the expansion of CD4+ Foxp3+ regulatory T cells from RA patients. More importantly, systemic infusion of human UC-MSCs reduced the severity of CIA in a mouse model. Consistently, there were reduced levels of proinflammatory cytokines and chemokines (TNF-α, IL-6 and monocyte chemoattractant protein-1) and increased levels of the anti-inflammatory/regulatory cytokine (IL-10) in sera of UC-MSCs treated mice. Moreover, such treatment shifted Th1/Th2 type responses and induced Tregs in CIA.

Conclusions

In conclusion, human UC-MSCs suppressed the various inflammatory effects of FLSs and T cells of RA in vitro, and attenuated the development of CIA in vivo, strongly suggesting that UC-MSCs might be a therapeutic strategy in RA. In addition, the immunosuppressive activitiy of UC-MSCs could be prolonged by the participation of Tregs.  相似文献   

10.
11.

Introduction

Chemerin is a chemotactic agonist identified as a ligand for ChemR23 that is expressed on macrophages and dendritic cells (DCs). In this study, we analyzed the expression of chemerin and ChemR23 in the synovium of rheumatoid arthritis (RA) patients and the stimulatory effects of chemerin on fibroblast-like synoviocytes (FLSs) from RA patients.

Methods

Chemerin and ChemR23 expression in the RA synovium was ascertained by immunohistochemistry and Western blot analysis. Chemerin expression on cultured FLSs was analyzed by ELISA. ChemR23 expression on FLSs was determined by immunocytochemistry and Western blot analysis. Cytokine production from FLSs was measured by ELISA. FLS cell motility was evaluated by utilizing a scrape motility assay. We also examined the stimulating effect of chemerin on the phosphorylation of mitogen-activated protein kinase (MAPK), p44/42 mitogen-activated protein kinase (ERK1/2), p38MAPK, c-Jun N-terminal kinase (JNK)1/2 and Akt, as well as on the degradation of regulator of NF-κB (IκBα) in FLSs, by Western blot analysis.

Results

Chemerin was expressed on endothelial cells and synovial lining and sublining cells. ChemR23 was expressed on macrophages, immature DCs and FLSs and a few mature DCs in the RA synovium. Chemerin and ChemR23 were highly expressed in the RA synovium compared with osteoarthritis. Chemerin and ChemR23 were expressed on unstimulated FLSs. TNF-α and IFN-γ upregulated chemerin production. Chemerin enhanced the production of IL-6, chemokine (C-C motif) ligand 2 and matrix metalloproteinase 3 by FLSs, as well as increasing FLS motility. The stimulatory effects of chemerin on FLSs were mediated by activation of ERK1/2, p38MAPK and Akt, but not by JNK1/2. Degradation of IκB in FLSs was not promoted by chemerin stimulation. Inhibition of the ERK1/2, p38MAPK and Akt signaling pathways significantly suppressed chemerin-induced IL-6 production. Moreover, blockade of the p38MAPK and Akt pathways, but not the ERK1/2 pathway, inhibited chemerin-enhanced cell motility.

Conclusions

The interaction of chemerin and ChemR23 may play an important role in the pathogenesis of RA through the activation of FLSs.  相似文献   

12.

Introduction

The purpose of this study was to analyze the data of patients with T-cell large granular lymphocyte (T-LGL) lymphocytosis associated with inflammatory arthropathy or with no arthritis symptoms.

Methods

Clinical, serological as well as histopathological, immuhistochemical, and flow cytometric evaluations of blood/bone marrow of 21 patients with T-LGL lymphocytosis were performed. The bone marrow samples were also investigated for T-cell receptor (TCR) and immunoglobulin (IG) gene rearrangements by polymerase chain reaction with heteroduplex analysis.

Results

Neutropenia was observed in 21 patients, splenomegaly in 10, autoimmune diseases such as rheumatoid arthritis (RA) in 9, unclassified arthritis resembling RA in 2, and autoimmune thyroiditis in 5 patients. T-LGL leukemia was recognized in 19 cases. Features of Felty syndrome were observed in all RA patients, representing a spectrum of T-LGL proliferations from reactive polyclonal through transitional between reactive and monoclonal to T-LGL leukemia. Bone marrow trephines from T-LGL leukemia patients showed interstitial clusters and intrasinusoidal linear infiltrations of CD3+/CD8+/CD57+/granzyme B+ lymphocytes, reactive lymphoid nodules, and decreased or normal granulocyte precursor count with left-shifted maturation. In three-color flow cytometry (FCM), T-LGL leukemia cells demonstrated CD2, CD3, and CD8 expression as well as a combination of CD16, CD56, or CD57. Abnormalities of other T-cell antigen expressions (especially CD5, CD7, and CD43) were also detected. In patients with polyclonal T-LGL lymphocytosis, T cells were dispersed in the bone marrow and the expression of pan-T-cell antigens in FCM was normal. Molecular studies revealed TCRB and TCRG gene rearrangements in 13 patients and TCRB, TCRG, and TCRD in 4 patients. The most frequently rearranged regions of variable genes were Vβ-Jβ1, Jβ2 and Vγ If Vγ10-Jγ. Moreover, in 4 patients, additional rearrangements of IG kappa and lambda variable genes of B cells were also observed.

Conclusion

RA and neutropenia patients represented a continuous spectrum of T-LGL proliferations, although monoclonal expansions were most frequently observed. The histopathological pattern and immunophenotype of bone marrow infiltration as well as molecular characteristics were similar in T-LGL leukemia patients with and without arthritis.  相似文献   

13.
14.

Introduction

Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA.

Methods

CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1.

Results

Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice.

Conclusions

Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.  相似文献   

15.

Introduction

Similar to matrix metalloproteinases, glycosidases also play a major role in cartilage degradation. Carbohydrate cleavage products, generated by these latter enzymes, are released from degrading cartilage during arthritis. Some of the cleavage products (such as hyaluronate oligosaccharides) have been shown to bind to Toll-like receptors and provide endogenous danger signals, while others (like N-acetyl glucosamine) are reported to have chondroprotective functions. In the current study for the first time we systematically investigated the expression of glycosidases within the joints.

Methods

Expressions of β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, sperm adhesion molecule 1 and klotho genes were measured in synovial fibroblasts and synovial membrane samples of patients with rheumatoid arthritis and osteoarthritis by real-time PCR. β-D-Glucuronidase, β-D-glucosaminidase and β-D-galactosaminidase activities were characterized using chromogenic or fluorogenic substrates. Synovial fibroblast-derived microvesicles were also tested for glycosidase activity.

Results

According to our data, β-D-hexosaminidase, β-D-glucuronidase, hyaluronidase, and klotho are expressed in the synovial membrane. Hexosaminidase is the major glycosidase expressed within the joints, and it is primarily produced by synovial fibroblasts. HexA subunit gene, one of the two genes encoding for the alpha or the beta chains of hexosaminidase, was characterized by the strongest gene expression. It was followed by the expression of HexB subunit gene and the β-D-glucuronidase gene, while the expression of hyaluronidase-1 gene and the klotho gene was rather low in both synovial fibroblasts and synovial membrane samples. Tumor growth factor-β1 profoundly downregulated glycosidase expression in both rheumatoid arthritis and osteoarthritis derived synovial fibroblasts. In addition, expression of cartilage-degrading glycosidases was moderately downregulated by proinflammatory cytokines including TNFα, IL-1β and IL-17.

Conclusions

According to our present data, glycosidases expressed by synovial membranes and synovial fibroblasts are under negative regulation by some locally expressed cytokines both in rheumatoid arthritis and osteoarthritis. This does not exclude the possibility that these enzymes may contribute significantly to cartilage degradation in both joint diseases if acting in collaboration with the differentially upregulated proteases to deplete cartilage in glycosaminoglycans.  相似文献   

16.

Background

To elucidate gene expression associated with copy number changes, we performed a genome-wide copy number and expression microarray analysis of 25 pairs of gastric tissues.

Methods

We applied laser capture microdissection (LCM) to obtain samples for microarray experiments and profiled DNA copy number and gene expression using 244K CGH Microarray and Human Exon 1.0 ST Microarray.

Results

Obviously, gain at 8q was detected at the highest frequency (70%) and 20q at the second (63%). We also identified molecular genetic divergences for different TNM-stages or histological subtypes of gastric cancers. Interestingly, the C20orf11 amplification and gain at 20q13.33 almost separated moderately differentiated (MD) gastric cancers from poorly differentiated (PD) type. A set of 163 genes showing the correlations between gene copy number and expression was selected and the identified genes were able to discriminate matched adjacent noncancerous samples from gastric cancer samples in an unsupervised two-way hierarchical clustering. Quantitative RT-PCR analysis for 4 genes (C20orf11, XPO5, PUF60, and PLOD3) of the 163 genes validated the microarray results. Notably, some candidate genes (MCM4 and YWHAZ) and its adjacent genes such as PRKDC, UBE2V2, ANKRD46, ZNF706, and GRHL2, were concordantly deregulated by genomic aberrations.

Conclusions

Taken together, our results reveal diverse chromosomal region alterations for different TNM-stages or histological subtypes of gastric cancers, which is helpful in researching clinicopathological classification, and highlight several interesting genes as potential biomarkers for gastric cancer.  相似文献   

17.

Background

A. fumigatus has been associated with a wide spectrum of allergic disorders such as ABPA or SAFS. It is poorly understood what allergens in particular are being expressed during fungal invasion and which are responsible for stimulation of immune responses. Study of the dynamics of allergen production by fungi may lead to insights into how allergens are presented to the immune system.

Methods

Expression of 17 A. fumigatus allergen genes was examined in response to various culture conditions and stimuli as well as in the presence of macrophages in order to mimic conditions encountered in the lung.

Results

Expression of 14/17 allergen genes was strongly induced by oxidative stress caused by hydrogen peroxide (Asp f 1, -2, -4, -5, -6, -7, -8, -10, -13, -17 and -18, all >10-fold and Asp f 11, -12, and -22, 5-10-fold) and 16/17 allergen genes were repressed in the presence of cAMP. The 4 protease allergen genes (Asp f -5, -10, -13 and -18) were expressed at very low levels compared to the comparator (β-tubulin) under all other conditions examined. Mild heat shock, anoxia, lipid and presence of macrophages did not result in coordinated changes in allergen gene expression. Growth on lipid as sole carbon source contributed to the moderate induction of most of the allergen genes. Heat shock (37°C > 42°C) caused moderate repression in 11/17 genes (Asp f 1, -2, -4, -5, -6, -9, -10, -13, -17, -18 and -23) (2- to 9-fold), which was mostly evident for Asp f 1 and -9 (~9-fold). Anaerobic stress led to moderate induction of 13/17 genes (1.1 to 4-fold) with one, Asp f 8 induced over 10-fold when grown under mineral oil. Complex changes were seen in gene expression during co-culture of A. fumigatus with macrophages.

Conclusions

Remarkable coordination of allergen gene expression in response to a specific condition (oxidative stress or the presence of cAMP) has been observed, implying that a single biological stimulus may play a role in allergen gene regulation. Interdiction of a putative allergen expression induction signalling pathway might provide a novel therapy for treatment of fungal allergy.  相似文献   

18.

Background

Growing evidence suggests that epigenetic mechanisms of gene regulation may play a role in susceptibilities to specific toxicities and adverse drug reactions. MiRNAs in particular have been shown to be important regulators in cancer and other diseases and show promise as predictive biomarkers for diagnosis and prognosis. In this study, we characterized the global kidney miRNA expression profile in untreated male and female F344 rats throughout the life span. These findings were correlated with sex-specific susceptibilities to adverse renal events, such as male-biased renal fibrosis and inflammation in old age.

Methods

Kidney miRNA expression was examined in F344 rats at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent miRNA microarrays. Differential expression was determined using filtering criteria of ≥1.5 fold change and ANOVA or pairwise t-test (FDR <5%) to determine significant age and sex effects, respectively. Pathway analysis software was used to investigate the possible roles of these target genes in age- and sex-specific differences.

Results

Three hundred eleven miRNAs were found to be expressed in at least one age and sex. Filtering criteria revealed 174 differentially expressed miRNAs in the kidney; 173 and 34 miRNAs exhibiting age and sex effects, respectively. Principal component analysis revealed age effects predominated over sex effects, with 2-week miRNA expression being much different from other ages. No significant sexually dimorphic miRNA expression was observed from 5 to 8 weeks, while the most differential expression (13 miRNAs) was observed at 21 weeks. Potential target genes of these differentially expressed miRNAs were identified.

Conclusions

The expression of 56% of detected renal miRNAs was found to vary significantly with age and/or sex during the life span of F344 rats. Pathway analysis suggested that 2-week-expressed miRNAs may be related to organ and cellular development and proliferation pathways. Male-biased miRNA expression at older ages correlated with male-biased renal fibrosis and mononuclear cell infiltration. These miRNAs showed high representation in renal inflammation and nephritis pathways, and included miR-214, miR-130b, miR-150, miR-223, miR-142-5p, miR-185, and miR-296*. Analysis of kidney miRNA expression throughout the rat life span will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13293-014-0019-1) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Introduction  

Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号