首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern.  相似文献   

2.
3.
With the use of a two-step HPLC purification procedure, two sets of two isoforms of the crustacean hyperglycemic hormone (CHH) were isolated from sinus glands of the lobster Homarus americanus. Structural differences between the two groups of isoforms were found in their amino acid sequences, amino acid compositions and precise molecular weights. Using peptide mapping, the difference between the isoforms in each group was located within the first eight amino acids at the N-termini. The nature of this difference remained unclear as all four peptides had the same N-terminal amino acid sequence unto residue 19.  相似文献   

4.
5.
Neuropeptides in the stomatogastric ganglion (STG) and the brain of adult and late embryonic Homarus americanus were compared using a multi-faceted mass spectral strategy. Overall, 29 neuropeptides from 10 families were identified in the brain and/or the STG of the lobster. Many of these neuropeptides are reported for the first time in the embryonic lobster. Neuropeptide extraction followed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry enabled confident identification of 24 previously characterized peptides in the adult brain and 13 peptides in the embryonic brain. Two novel peptides (QDLDHVFLRFa and GPPSLRLRFa) were de novo sequenced. In addition, a comparison of adult to embryonic brains revealed the presence of an incompletely processed form of Cancer borealis tachykinin-related peptide 1a (CabTRP 1a, APSGFLGMRG) only in the embryonic brain. A comparison of adult to embryonic STGs revealed that QDLDHVFLRFa was present in the embryonic STG but absent in the adult STG, and CabTRP 1a exhibited the opposite trend. Relative quantification of neuropeptides in the STG revealed that three orcokinin family peptides (NFDEIDRSGFGF, NFDEIDRSGFGFV, and NFDEIDRSGFGFN), a B-type allatostatin (STNWSSLRSAWa), and an orcomyotropin-related peptide (FDAFTTGFGHS) exhibited higher signal intensities in the adult relative to the embryonic STG. RFamide (Arg-Phe-amide) family peptide (DTSTPALRLRFa), [Val1]SIFamide (VYRKPPFNGSIFa), and orcokinin-related peptide (VYGPRDIANLY) were more intense in the embryonic STG spectra than in the adult STG spectra. Collectively, this study expands our current knowledge of the H. americanus neuropeptidome and highlights some intriguing expression differences that occur during development.  相似文献   

6.
Marco HG  Stoeva S  Voelter W  Gäde G 《Peptides》2000,21(9):1313-1321
We have isolated a peptide from extracts of sinus glands from a South African spiny lobster species, Jasus lalandii, by high-performance liquid chromatography (HPLC) and identified it as a putative molt-inhibiting hormone (MIH) by (i) an in vitro assay with J. lalandii Y-organs to measure the inhibition of ecdysteroid synthesis and (ii) an immunoassay using antiserum raised against MIH of the edible crab. The MIH of J. lalandii has 74 amino acid residues, a molecular mass of 9006 Da, a free N-terminus and an amidated C-terminus. The full primary sequence has been obtained from sequencing various digest fragments (tryptic, endoproteinase Asp-N, cyanogen bromide) of the unreduced (native) peptide: RFTFDCPGMMGQRYLYEQVEQVCDDCYNLYREEKIAVNCRENCFLNSWFTVCLQATMREHETPRFDIWR SIILKA-NH(2). Structural comparisons with other peptides show that the J. lalandii MIH belongs to the peptide family which includes the crustacean hyperglycemic hormone, molt-inhibiting hormone and vitellogenesis-inhibiting hormone (cHH/MIH/VIH). This novel peptide has 36-43% sequence identity to putative MIHs from other decapod crustaceans and 32-34% identity to the two cHH peptides previously identified in this spiny lobster species. This is the first report of a peptide with MIH activity in the Palinuridae infraorder.  相似文献   

7.
The crustacean hyperglycemic hormone (CHH) is synthesized as part of a larger preprohormone in which the sequence of CHH is N-terminally flanked by a peptide for which the name CPRP (CHH precursor-related peptide) is proposed. Both CHH and CPRP are present in the sinus gland, the neurohemal organ of neurosecretory cells located in the eyestalk of decapod crustaceans. This paper describes the isolation and sequence analysis of CPRPs isolated from sinus glands of the crab Carcinus maenas, the crayfish Orconectes limosus and the lobster Homarus americanus. The published sequence of "peptide H" isolated from the land crab, Cardisoma carnifex, has now been recognized as a CPRP in this species. Sequence comparison reveals a high level of identity for the N-terminal region (residues 1-13) between all four peptides, while identity in the C-terminal domain is high between lobster and crayfish CPRP on the one hand, and between both crab species on the other. Conserved N-terminal residues include a putative monobasic processing site at position 11, which suggests that CPRP may be a biosynthetic intermediate from which a potentially bioactive decapeptide can be derived.  相似文献   

8.
Several cardioactive peptides have been identified in insects and most of them are likely to act on the heart as neurohormones. Here we have investigated the cardioactive properties of members of a family of insect tachykinin-related peptides (TRPs) in heterologous bioassays with two coleopteran insects, Tenebrio molitor and Zophobas atratus. Their effects were compared with the action of the pentapeptide proctolin. We tested the cardiotropic activity of LemTRP-4 isolated from the midgut of the cockroach Leucophaea maderae, CavTK-I and CavTK-II isolated from the blowfly Calliphora vomitoria. The semi-isolated hearts of the two coleopteran species were strongly stimulated by proctolin. We observed a dose dependent increase in heartbeat frequency (a positive chronotropic effect) and a decrease in amplitude of contractions (a negative inotropic effect). In both beetles the TRPs are less potent cardiostimulators and exert lower maximal frequency responses than proctolin. LemTRP-4 applied at 10(-9)-10(-6) M was cardiostimulatory in both species inducing an increase of heart beat frequency. The amplitude of contractions was stimulated only in Z. atratus. CavTK-I and CavTK-II also exerted cardiostimulatory effects in Z. atratus at 10(-9)-10(-6) M. Both peptides stimulated the frequency, but only CavTK-II increased the amplitude of the heart beat. In T. molitor, however, the CavTKs induced no significant effect on the heart.Immunocytochemistry with antisera to the locust TRPs LomTK-I and LomTK-II was employed to identify the source of TRPs acting on the heart. No innervation of the heart by TRP immunoreactive axons could detected, instead it is possible that TRPs reach the heart by route of the circulation. The likely sources of circulating TRPs in these insects are TRP-immunoreactive neurosecretory cells of the median neurosecretory cell group in the brain with terminations in the corpora cardiaca and endocrine cells in the midgut.In conclusion, LemTRP-4, CavTK-I and CavTK-II are less potent cardiostimulators than proctolin and also exert stimulatory rather than inhibitory action on amplitude of contractions. The differences in the responses to proctolin and TRPs suggest that the peptides regulate heart activity by different mechanisms.  相似文献   

9.
Tachykinin-related peptides in invertebrates: a review   总被引:9,自引:0,他引:9  
Nässel DR 《Peptides》1999,20(1):141-158
Peptides with sequence similarities to members of the tachykinin family have been identified in a number of invertebrates belonging to the mollusca, echiuridea, insecta and crustacea. These peptides have been designated tachykinin-related peptides (TRPs) and are characterized by the preserved C-terminal pentapeptide FX1GX2Ramide (X1 and X2 are variable residues). All invertebrate TRPs are myostimulatory on insect hindgut muscle, but also have a variety of additional actions: they can induce contractions in cockroach foregut and oviduct and in moth heart muscle, trigger a motor rhythm in the crab stomatogastric ganglion, depolarize or hyperpolarize identified interneurons of locust and the snail Helix and induce release of adipokinetic hormone from the locust corpora cardiaca. Two putative TRP receptors have been cloned from Drosophila; both are G-protein coupled and expressed in the nervous system. The invertebrate TRPs are distributed in interneurons of the CNS of Limulus, crustaceans and insects. In the latter two groups TRPs are also present in the stomatogastric nervous system and in insects endocrine cells of the midgut display TRP-immunoreactivity. In arthropods the distribution of TRPs in neuronal processes of the brain displays similar patterns. Also in coelenterates, flatworms and molluscs TRPs have been demonstrated in neurons. The activity of different TRPs has been explored in several assays and it appears that an amidated C-terminal hexapeptide (or longer) is required for bioactivity. In many invertebrate assays the first generation substance P antagonist spantide I is a potent antagonist of invertebrate TRPs and substance P. Locustatachykinins stimulate adenylate cyclase in locust interneurons and glandular cells of the corpora cardiaca, but in other tissues the putative second messenger systems have not yet been identified. The heterologously expressed Drosophila TRP receptors coupled to the phospholipase C pathway and could induce elevations of inositol triphosphate. The structures, distributions and actions of TRPs in various invertebrates are compared and it is concluded that the TRPs are multifunctional peptides with targets both in the central and peripheral nervous system and other tissues, similar to vertebrate tachykinins. Invertebrate TRPs may also be involved in developmental processes.  相似文献   

10.
Using the polymerase chain reaction with degenerated oligonucleotides, we have isolated cDNA clones that encode two structurally different (92% identity) crustacean hyperglycemic hormones (CHH) from the lobster Homarus americanus. The deduced amino acid sequences fully agree with previously published data on partial amino acid sequences, amino acid compositions and molecular masses of hyperglycemic peptides in the lobster. A comparative analysis between the deduced primary structure of two lobster CHH and the crab CHH sequence reveals a phylogenetic relationship and allows the prediction of biologically important regions within the structures of these novel neuropeptides.  相似文献   

11.
FMRFamide-related peptides are common to a wide variety of invertebrate species, including helminths and arthropods. In arthropods, five distinct FMRFamide-related peptide subfamilies are recognised: the myosuppressins, extended-FLRFamides, -FMRFamides, -RFamides, and sulfakinins, members of which induce potent and diverse myotropic effects. Whilst >80 FMRFamide-related peptides have been identified in nematodes, only four FMRFamide-related peptides have been characterised from flatworms. The Ascaris suum ovijector/body wall bioassay and the Procerodes littoralis muscle fibre bioassay have proved both reliable and sensitive systems for assessing the functional activities of FMRFamide-related peptides in vitro, and data describing the effects of native FMRFamide-related peptides in these systems are rapidly accumulating. This is the first study to determine the cross-phyla activities of non-native FMRFamide-related peptides in both nematode and flatworm species. In the present study, the effects of 10 arthropod FMRFamide-related peptides (leucomyosuppressin [pQDVDHVFLRFamide], schistoFLRFamide [PDVDHVFLRFamide] and truncated analogues [HVFLRFamide and VFLRFamide], lobster peptide I [TNRNFLRFamide], lobster peptide II [SDRNFLRFamide], manducaFLRFamide II [GNSFLRFamide], manducaFLRFamide III [DPSFLRFamide], calliFMRFamide 4 [KPNQDFMRFamide] and perisulfakinin [EQFDDY(SO(3)H)GHMRFamide]), representing the five subfamilies, were examined on the body wall and ovijector of the parasitic porcine nematode, A. suum and dispersed muscle fibres from the free-living turbellarian, P. littoralis. The muscle activity of the ovijector was found to be modulated significantly by each of the arthropod FMRFamide-related peptides tested; the effects were concentration-dependent, reversible and repeatable. All but one (perisulfakinin) of the 10 arthropod FMRFamide-related peptides examined modulated significantly the activity of A. suum body wall muscle. In addition, all of the arthropod FMRFamide-related peptides examined induced potent concentration-dependent contractions of P. littoralis muscle fibres. These results reveal similarities in the ligand requirement(s) between FMRFamide-related peptide receptors within the Phyla Arthropoda, Nematoda and Platyhelminthes, and indicate significant receptor promiscuity, which highlights the potential of FMRFamide-related peptide receptors as legitimate targets for novel endectocidal agents.  相似文献   

12.
Seven isoforms of tachykinin-related peptides (TRPs) have been isolated from the brain of the cockroach Leucophaea maderae. These peptides (LemTRP-1, 2, and 5-9) share the C-terminal sequence GFX(1)GX(2)Ramide (where X(1) and X(2) are variable residues). In order to determine the neuronal distribution of several of these LemTRP isoforms, we raised antisera to their variable N-termini. Antisera to LemTRP-1, 2, 3, 7, and 8 were utilized for immunocytochemistry on cryostat sections of the L. maderae brain. As expected, the gut peptide LemTRP-3 was not detected in the brain, and the antisera to LemTRP-1, 2, and 7 labeled the same sets of neurons in different regions of the brain. These neurons could also be labeled with antisera raised to the more conserved C-termini of LemTRP-1 and the locust TRP LomTK-I. The antiserum to LemTRP-8 predominantly labeled a set of neurons distinct from that seen with any other N- or C-terminus-directed antisera, suggesting that it recognizes epitope(s) other than known insect TRPs. Our findings indicate that at least three of the LemTRPs are always co-localized in neurons of the L. maderae brain. We have also been able to show that LemTRP-2, which is an N-terminally extended form (17-mere) of LemTRP-1 with a dibasic putative cleavage site, is transported throughout the processes of the neurons in the same manner as LemTRP-1 and 7. Thus, LemTRP-2 may be released with the other shorter LemTRPs. This is the first investigation of LemTRP distribution in the cockroach central nervous system utilizing antisera to native peptides.  相似文献   

13.
Although relatively a large number of the complete mitochondrial genome sequences have been determined from various decapod species (29 mtDNA sequences reported so far), the information for the infraorder Astacidea (including lobsters, crayfishes, and their relatives) is very limited and represented by only one complete sequence from the Australian freshwater crayfish species Cherax destructor. In this study, we determined the complete mitochondrial DNA sequence of Homarus americanus, the first representative of the family Nephropidae to be fully characterized. Comparison of the gene arrangement reveals that H. americanus mtDNA is identical to those of other pancrustacean species but differs from the other astacidean species (C. destructor). Based on these data, it can be assumed that an idiosyncratic gene order discovered in C. destructor mtDNA may be secondarily acquired from the ancestral lineage of the Astacidea.  相似文献   

14.
In order to identify new orcokinin and orcomyotropin-related peptides in crustaceans, molecular and immunocytochemical data were combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In the crayfish Procambarus clarkii, four orcokinins and an orcomyotropin-related peptide are present on the precursor. Because these peptides are highly conserved, we assumed that other species have an identical number of peptides. To identify the peptides, immunocytochemistry was used to localize the regions of the stomatogastric nervous system in which orcokinins are predominantly present. One of the regions predominantly containing orcokinins was a previously undescribed olive-shaped neuropil region within the commissural ganglia of the lobsters Homarus americanus and Homarus gammarus. MALDI-TOF MS on these regions identified peptide masses that always occur together with the known orcokinins. Seven peptide ions occurred together in the peptide massspectra of the lobsters. Mass spectrometric fragmentation by MALDI-MS post-source decay (PSD) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI Q-TOF MS) collision-induced dissociation (CID) were used in the identification of six of these masses, either as orcokinins or as orcomyotropin-related peptides and revealed three hitherto unknown peptide variants, two of which are [His13]-orcokinin ([M+H]+ = 1540.8 Da) and an orcomyotropin-related peptide FDAFTTGFGHN ([M+H]+ = 1213.5 Da). The mass of the third previously unknown orcokinin variant corresponded to that of an identified orcokinin, but PSD fragmentation did not support the suggested amino acid sequence. CID analysis allowed partial de novo sequencing of this peptide. In the crab Cancer pagurus, five orcokinins and an orcomyotropin-related peptide were unambigously identified, including the previously unknown peptide variant [Ser9-Val13]-orcokinin ([M+H]+ = 1532.8 Da).  相似文献   

15.
Organisms have harnessed the unique chemistry of copper for a variety of purposes. However, that same chemistry makes this essential metal toxic at elevated concentrations. Metallothioneins (MTs), a family of small metal-binding proteins, are thought to play a crucial role in the regulation of this reactive ion. Here we report that copper-metallothioneins from the American lobster, Homarus americanus, interact with the tripeptide glutathione (gamma-Glu-Cys-Gly). Glutathione in the cytosolic fraction prepared from the digestive gland of the American lobster coelutes with copper-metallothionein during size-exclusion chromatography. The latter protein can be separated into three isoforms by anion-exchange chromatography. All three isoforms belong to the class I MTs. CuMT-I and -II are very similar, whereas CuMT-III is distinct from isoforms I and II. The interaction between glutathione and MT isoforms was examined by ultrafiltration experiments and size-exclusion HPLC. CuMT-III forms a stable 1:1 complex with glutathione, with a dissociation constant of 1 microM. CuMT-I/II makes a transient complex with glutathione, which releases copper as a copper-glutathione complex. This complex can function as the source of Cu(I) in the restoration of the oxygen-binding capacity of copper-free hemocyanin. These studies suggest that metallothionein and glutathione are intricately linked in the biochemistry of copper regulation.  相似文献   

16.
Hemocytes of the American lobster (Homarus americanus H. Milne Edwards) were classified after examination of Wright-Giemsa stained cytocentrifuge preparations by brightfield light microscopy. Eleven hemocyte types were identified using morphologic criteria. The classification system was then used to monitor changes in the differential hemocyte count (DHC) of lobsters infected with the Gram positive coccus Aerococcus viridans var. homari, etiologic agent of gaffkemia. The appearance of less mature hemocytes in the DHCs of lobsters in the late stages of infection was similar to the 'left shift' of vertebrate inflammation. Results from this study suggest that DHCs can be used to assess and characterize inflammation in H. americanus and possibly other crustaceans.  相似文献   

17.
18.
Antigen-presenting cells degrade endocytosed antigens, e.g. collagen type II, into peptides that are bound and presented to arthritogenic CD4(+) helper T cells by major histocompatibility complex (MHC) class II molecules. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M (HLA-DM in humans), a heterodimeric MHC class II-like molecule that facilitates CLIP removal from MHC class II molecules and aids to shape the peptide repertoire presented by MHC class II to CD4(+) T cells. In contrast to the HLA-DM region in humans, the beta-chain locus is duplicated in mice, with the H2-Mb1 beta-chain distal to H2-Mb2 and the H2-Ma alpha-chain gene. H2-M alleles appear to be associated with the development of autoimmune diseases. Recent data showed that Mbeta1 and Mbeta2 isoforms are differentially expressed in isolated macrophages and B cells, respectively. The tissue expression and functional role of these heterodimers in promoting CLIP removal and peptide selection have not been addressed. We utilized the human T2 cell line, which lacks part of chromosome 6 encompassing the MHC class II and DM genes, to construct transgenic cell lines expressing the MHC class II heterodimer I-A(q) alone or in the presence of H2-Malphabeta1 or H2-Malphabeta2 heterodimers. Both H2-M isoforms facilitate the exchange of CLIP for cognate peptides on I-A(q) molecules from arthritis-susceptible DBA/1 mice and induce a conformational change in I-A(q) molecules. Moreover, I-A(q) cell-surface expression is not absolutely dependent on H2-M molecules. These data suggest that I-A(q) exhibits a high affinity for CLIP since virtually all I-A(q) molecules on T2 cells were found to be associated with CLIP in the absence of both H2-M isoforms.  相似文献   

19.
Recombinant peptides related to vitellogenesis-inhibiting hormone (VIH) of the American lobster Homarus americanus were expressed in bacterial cells, and then purified after being allowed to refold. Biological activities of the recombinant VIHs having an amidated C-terminus (rHoa-VIH-amide) and a free carboxyl-terminus (rHoa-VIH-OH) were examined using an ovarian fragment incubation system derived from the kuruma prawn, Marsupenaeus japonicus. The rHoa-VIH-amide significantly reduced vitellogenin mRNA levels in the ovary, while rHoa-VIH-OH had no effect. This is the first report that describes the production of a crustacean VIH having biological activity and the importance of the C-terminal amidation for its vitellogenesis-inhibiting activity.  相似文献   

20.
The peptide hormones guanylin and uroguanylin are ligands of the intestinal guanylyl cyclase-C (GC-C) that is involved in the regulation of epithelial water and electrolyte transport. The small peptides contain 15 and 16 amino acids, respectively, and two disulfide bonds with a 1-3/2-4 connectivity. This structural feature causes the unique existence of two topological isoforms for each peptide in an approximate 3:2 ratio, with only one of the isoforms exhibiting GC-C-activating potential. The two uroguanylin isomers can be separated by HPLC and are of sufficient stability to be studied separately at ambient temperatures while the two guanylin isomers are rapidly interconverting even at low temperatures. Both isomers show clearly distinguishable (1)H chemical shifts. To investigate the influence of certain amino acid side chains on this isomerism and interconversion kinetics, derivatives of guanylin and uroguanylin (L-alanine scan and chimeric peptides) were designed and synthesized by Fmoc solid-phase chemistry and compared by HPLC and 2D (1)H NMR spectroscopy. Amino acid residues with the most significant effects on the interconversion kinetics were predominantly identified in the COOH-terminal part of both peptides, whereas amino acids in the central part of the peptides only moderately affected the interconversion. Thus, the conformational conversion among the isomers of both peptides is under the control of a COOH-terminal sterical hindrance, providing a detailed model for this dynamic isomerism. Our results demonstrate that kinetic control of the interconversion process can be achieved by the introduction of side chains with a defined sterical profile at suitable sequence positions. This is of potential impact for the future development of GC-C peptide agonists and antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号