首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Low oxygen tension was proposed to be one of the environmental parameters characteristic of the patho‐physiological conditions of natural infections by Brucella suis. We previously showed that various respiratory pathways may be used by B. suis in response to microaerobiosis and anaerobiosis. Here, we compare the whole proteome of B. suis exposed to such low‐oxygenated conditions to that obtained from bacteria grown under ambient air using 2‐D DIGE. Data showed that the reduction of basal metabolism was in line with low or absence of growth of B. suis. Under both microaerobiosis and anaerobiosis, glycolysis and denitrification were favored. In addition, fatty acid oxidation and possibly citrate fermentation could also contribute to energy production sufficient for survival under anaerobiosis. When oxygen availability changed and became limiting, basic metabolic processes were still functional and variability of respiratory pathways was observed to a degree unexpected for a strictly aerobic microorganism. This highly flexible respiration probably constitutes an advantage for the survival of Brucella under the restricted oxygenation conditions encountered within host tissue.  相似文献   

4.
5.
Nasopharyngeal carcinoma (NPC), one of the most common cancers in Southeast Asia, is not easily diagnosed until advanced stages. To discover potential biomarkers for improving NPC diagnosis, we herein identified the aberrant plasma proteins in NPC patients. We first removed the top-seven abundant proteins from plasma samples of healthy controls and NPC patients, and then labeled the samples with different fluorescent cyanine dyes. The labeled samples were then mixed equally and fractionated with ion-exchange chromatography followed by SDS-PAGE. Proteins showing altered levels in NPC patients were identified by in-gel tryptic digestion and LC-MS/MS. When the biological roles of the 45 identified proteins were assessed via MetaCore? analysis, the blood coagulation pathway emerged as the most significantly altered pathway in NPC plasma. Plasma kallikrein (KLKB1) and thrombin-antithrombin III complex (TAT) were chosen for evaluation as the candidate NPC biomarkers because of their involvement in blood coagulation. ELISAs confirmed the elevation of their plasma levels in NPC patients versus healthy controls. Western blot and activity assays further showed that the KLKB1 active form was significantly increased in NPC plasma. Collectively, our results identified the significant alteration of blood coagulation pathway in NPC patients, and KLKB1 and TAT may represent the potential NPC biomarkers.  相似文献   

6.
7.
《Cell reports》2023,42(6):112620
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
Brucella species are pathogenic agents that cause brucellosis, a debilitating zoonotic disease that affects a large variety of domesticated animals and humans. Brucella melitensis and Brucella abortus are considered major health threats because of their highly infectious nature and worldwide occurrence. The availability of the annotated genomes for these two species has allowed a comparative proteomics study of laboratory grown B. melitensis 16M and B. abortus 2308 by two-dimensional (2-D) gel electrophoresis and peptide mass fingerprinting. Computer-assisted analysis of the different 2-D gel images of strains 16M and 2308 revealed significant quantitative and qualitative differences in their protein expression patterns. Proteins involved in membrane transport, particularly the high affinity amino acids binding proteins, and those involved in Sec-dependent secretion systems related to type IV and type V secretion systems, were differentially expressed. Differential expression of these proteins may be responsible for conferring specific host preference in the two strains 2308 and 16M.  相似文献   

10.
Hemotrophic mycoplasmas, bacteria without cell walls whose niche is the erythrocytes of their hosts, have never been cultivated in vitro. Therefore, knowledge of their pathogenesis is fundamental. Mycoplasma suis infects pigs, causing either acute fatal hemolytic anemia or chronic low-grade anemia, growth retardation, and immune suppression. Recently, the complete genomes of two hemotrophic mycoplasma species, M. suis and M. haemofelis, were sequenced, offering new strategies for the analysis of their pathogenesis. In this study we implemented a proteomic approach to identify M. suis proteins during acute infection by using tandem mass spectrometry. Twenty-two percent of the predicted proteins encoded in M. suis strain KI_3806 were identified. These included nearly all encoded proteins of glycolysis and nucleotide metabolism. The proteins for lipid metabolism, however, were underrepresented. A high proportion of the detected proteins are involved in information storage and processing (72.6%). In addition, several proteins of different functionalities, i.e., posttranslational modification, membrane genesis, signal transduction, intracellular trafficking, inorganic ion transport, and defense mechanisms, were identified. In its reduced genome, M. suis harbors 65.3% (strain Illinois) and 65.9% (strain KI_3806) of the genes encode hypothetical proteins. Of these, only 6.3% were identified at the proteome level. All proteins identified in this study are present in both M. suis strains and are encoded in more highly conserved regions of the genome sequence. In conclusion, our proteome approach is a further step toward the elucidation of the pathogenesis and life cycle of M. suis as well as the establishment of an in vitro cultivation system.  相似文献   

11.
Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.  相似文献   

12.
Brucellosis is a worldwide disease of humans and livestock that is caused by a number of very closely related classical Brucella species in the alpha-2 subdivision of the Proteobacteria. We report the complete genome sequence of Brucella abortus field isolate 9-941 and compare it to those of Brucella suis 1330 and Brucella melitensis 16 M. The genomes of these Brucella species are strikingly similar, with nearly identical genetic content and gene organization. However, a number of insertion-deletion events and several polymorphic regions encoding putative outer membrane proteins were identified among the genomes. Several fragments previously identified as unique to either B. suis or B. melitensis were present in the B. abortus genome. Even though several fragments were shared between only B. abortus and B. suis, B. abortus shared more fragments and had fewer nucleotide polymorphisms with B. melitensis than B. suis. The complete genomic sequence of B. abortus provides an important resource for further investigations into determinants of the pathogenicity and virulence phenotypes of these bacteria.  相似文献   

13.
14.
Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.  相似文献   

15.
Bacteria reorganize their physiology upon entry to stationary phase. What part of this reorganization improves starvation survival is a difficult question because the change in physiology includes a global reorganization of the proteome, envelope, and metabolism of the cell. In this work, we used several trade‐offs between fast growth and long survival to statistically score over 2,000 Escherichia coli proteins for their global correlation with death rate. The combined ranking allowed us to narrow down the set of proteins that positively correlate with survival and validate the causal role of a subset of proteins. Remarkably, we found that important survival genes are related to the cell envelope, i.e., periplasm and outer membrane, because the maintenance of envelope integrity of E. coli plays a crucial role during starvation. Our results uncover a new protective feature of the outer membrane that adds to the growing evidence that the outer membrane is not only a barrier that prevents abiotic substances from reaching the cytoplasm but also essential for bacterial proliferation and survival.  相似文献   

16.
The events involved in the establishment of a latent infection with Mycobacterium tuberculosis are not fully understood, but hypoxic conditions are generally believed to be the environment encountered by the pathogen in the central part of the granuloma. The present study was undertaken to provide insight into M. tuberculosis protein expression in in vitro latency models where oxygen is depleted. The response of M. tuberculosis to low-oxygen conditions was investigated in both cellular and extracellular proteins by metabolic labeling, two-dimensional electrophoresis, and protein signature peptide analysis by liquid chromatography-mass spectrometry. By peptide mass fingerprinting and immunodetection, five proteins more abundant under low-oxygen conditions were identified from several lysates of M. tuberculosis: Rv0569, Rv2031c (HspX), Rv2623, Rv2626c, and Rv3841 (BfrB). In M. tuberculosis culture filtrates, two additional proteins, Rv0363c (Fba) and Rv2780 (Ald), were found in increased amounts under oxygen limitation. These results extend our understanding of the hypoxic response in M. tuberculosis and potentially provide important insights into the physiology of the latent bacilli.  相似文献   

17.
Tartaglia GG  Caflisch A 《Proteins》2007,68(1):273-278
Protein sequences have evolved to optimize biological function that usually requires a well-defined three-dimensional structure and a monomeric (or oligomeric) state. These two requirements may be in conflict as the propensity for beta-sheet structure, which is one of the two most common regular conformations of the polypeptide chain in folded proteins, favors also the formation of ordered aggregates of multiple copies of the same protein (fibril, i.e., polymeric state). Such beta-aggregation is typical of amyloid diseases that include Alzheimer's, Parkinson's, and type II diabetes as well as the spongiform encephalopathies. Here, an analytical model previously developed for evaluating the amyloidogenic potential of polypeptides is applied to the proteome of the budding yeast (Saccharomyces cerevisiae). The model is based on the physicochemical properties that are relevant for beta-aggregation and requires only the protein sequence as input. It is shown that beta-aggregation prone proteins in yeast are accrued in molecular transport, protein biosynthesis, and cell wall organization processes while they are underrepresented in ribosome biogenesis, RNA metabolism, and vitamin metabolism. Furthermore, beta-aggregation prone proteins are much more abundant in the cell wall, endoplasmic reticulum, and plasma membrane than in the nucleolus, ribosome, and nucleus. Thus, this study indicates that evolution has not only prevented the selection of amyloidogenic sequences in cellular compartments characterized by a high concentration of unfolded proteins but also tried to exploit the beta-aggregated state for certain functions (e.g. molecular transport) and in well-confined cellular environments or organelles to protect the rest of the cell from toxic (pre-)fibrillar species.  相似文献   

18.
19.
A quantitative proteome study using the stable isotope labeling with amino acids in cell culture technique was performed on bovine kidney cells after infection with the alphaherpesvirus pseudorabies virus (PrV), the etiological agent of Aujeszky's disease. To enhance yields of proteins to be identified, raw extracts were fractionated by affinity solid-phase extraction with a combination of a cibacron blue F3G-A and a heparin matrix and with a phosphoprotein-specific matrix. After two-dimensional gel electrophoresis in different pH ranges between pH 3 and pH 10, 2,600 proteins representing 565 genes were identified by mass spectrometry and screened for virus-induced changes in relative protein levels. Four hours after infection, significant quantitative variations were found for constituents of the nuclear lamina, representatives of the heterogeneous nuclear ribonucleoproteins, proteins involved in membrane trafficking and intracellular transport, a ribosomal protein, and heat shock protein 27. Several proteins were present in multiple charge variants that were differentially affected by infection with PrV. As a common pattern for all these proteins, a mass shift in favor of the more acidic isoforms was observed, suggesting the involvement of viral or cellular kinases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号